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Abstract

This paper discussed a genetic algorithm based hybrid approach to solve different scenario
(optimistic scenario, most-likely scenario and pessimistic scenario) of fuzzy multi-objective
assignment problem (FMOAP) using an exponential membership function in which coefficient
of the objective function is described by triangular possibilities distribution (TDP). Moreover,
we used the α-level sets to classify the fuzzy judgment for Decision maker (DM) to optimize
different scenario of fuzzy objective functions. We used a fuzzy technique to solve multi-objective
optimization problem in which DM is required to specify the indistinct aspiration level as per the
his/her preference and genetic algorithm is used to solve the 0-1 optimization problem for different
choices of shape parameter in the exponential membership function. A numerical example is
provided to demonstrate the effectiveness of the proposed approach with data set form realistic
situation.
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1 Introduction

In real world decision making scenario, several organizations faced with one important problem of
allocating the different employees to different jobs. Each employee may spend different quantity of
resources to complete different jobs because of the personal ability or other reasons. The objective
is to assign each job to proper employee so that the total utilization of resources can be optimized
and all jobs can be completed. Assignment problem (AP) deals with assigning the N employees to
N jobs such that total cost/ time can be minimized and total profit/ quality can be maximized.
(With various consumption rates). In AP, generally two types of objectives are measured: Maximize
objective and Minimize objective. Minimization used minimize job cost or total duration etc while
the maximization used for maximize overall profit or the overall quality etc. The general solution
procedures of AP can be found in the literature survey of Pentico [1].

In the real world decision making, we may often meet uncertain phenomena such as random
phenomena, fuzzy phenomena, and so on due to the uncertainty. In such conditions, AP turns
into an uncertain assignment problem as fuzzy assignment problem (FAP). [2] first time introduced
the concept fuzzy set theory which provided high effectual way to handle uncertain data. In decision
making problem of real world, AP has more advantage by fuzzy theory, subjective preference of
decision maker (DM). One may refer to the articles ([3],[4],[5],[6],[7],[8],[9],[10],[11], [12], [13], [14],
[15]) for more details on FAP. In decision making area, fuzzy concept is mostly used in multi-
objective optimization problem (MOP). One may refer to the article ([16],[17], [18], [19]) for more
details on MOP.

Possibilistic decision-making models have given an important characteristic in handling objective
functions and constraints of vague coefficients and manage vague information of real world decision
making problems. Several studies in the literature are focused on fuzzy objective function and/or
constrains. With respect to possibilities decision making model, one may refer to the articles of
([20],[21], [13],[22], [23], [24], [25]).

FMOAP is a single 0-1 optimization problem with some realistic constraints and is NP-hard problem.
To concern with such kind of problem, several methods have been developed by researchers.
Reference [26] has proposed a hybrid genetic algorithm to solve bi-criteria assignment problem in
which this algorithm is a cooperative approach between genetic algorithm and linear programming
method to generate the set of non supported efficient solutions of the problem and it also contains
local search procedure to introduce for balancing the diversification and the intensification in
the search area. Reference [27] proposed the GA based hybrid approach to solve multi-objective
assignment problem. Toroslu and Arslanoglu [28] presented GA solutions for different versions of
the personnel assignment problem with multiple objectives based on hierarchical and set constraints.
Reference [29] used GA to solve personal assignment problem with verbal information. The Three
Index Assignment Problem (AP3) is studied by Gaofeng Huang et al. [30] proposed a new local
search heuristic for Three index assignment problem and hybridized it with genetic algorithm.
Reference [31] solved assignment problem using GA and simulated annealing method. Harper et
al. [32] used genetic algorithm for the project assignment problem. Yonghui Oh et al [33] solved
A dock-door assignment problem for the Korean mail distribution center by two solution methods,
three-phase heuristic procedure and GA. Harish Garg [34] has presented a hybrid technique as
PSO-GA for solving constrainted optimization problem.

In this paper, we proposed genetic algorithm based hybrid approach to solve different scenario
(optimistic scenario, most-likely scenario and pessimistic scenario) of FMOAP using fuzzy exponential
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membership function. Fuzzy technique is most commonly used to solve multi-objective optimization
problem in which decision maker (DM) is require to specify the indistinct aspiration level based
on his past experience and information for find the optimal allocations plan. GA provided a
proper technique to solve the non-linear, discrete, non-convex types of large scale optimization
problem. Genetic algorithm based hybrid approach gives the great flexibility to solve multi-objective
optimization problem in terms of considered the different choices of aspiration level for each objective
function. This approach forces to optimize each objective by maximized the degree of satisfaction
in respect of cost, time and quality objective to provide better assignment plans.

The rest of the paper is as follows. Section-2 described the formulation of fuzzy multi-objective
assignment problem. Section-3 gives a discussion of possibilistic programming approach, formulation
of auxiliary multi-objective 0-1 programming model for optimistic, most-likely and pessimistic
scenarios. Section-4 discussed Solution method, algorithm and flow chart for auxiliary model.
Numerical illustration and obtained results analysis are discussed in section-5 to show the effectiveness
of developed hybrid approach in different situation as per scenario. Finally, in section-6, we submit
our conclusion.

2 Fuzzy Multi-objective Assignment Problem Formula-
tion

Main characteristics and some assumption are used in the fuzzy multi-objective assignment problem
(FMOAP) are (1) Each job is finished by only one employee, and an employee can accept more
than one job, all the jobs must be completed. (2) It is not compulsory to allow any job to some
employees. (3) It is necessary to specify the number of employees who have been assigned to jobs,
to balance the amount of work between the employees. (4) In the decision-making method, each
employee is considered by his/her working ability ([12],[13]). We assume that each employee should
be assigned the number of duties in a certain range.

2.1 Fuzzy multi-objective assignment model

To formulate the mathematical model of FMOAP, the indices, parameters and variables are used
as per ([12],[13]). (1) Parameters: workers = jobs = n; number employees assigned jobs = s;
maximum jobs assigned to each employee =li; (2) Indices: j and i respectively defined index of
jobs and employee (3) Decision variables: xij is represented the whether the ith employee is

assigned for jth jobs or not. xij =

{
1; if ith employee is assigned to jth job
0; otherwise

Formulation of objective functions:

After completion of all jobs, the total cost, total consumed time and the total achieved a quality
level are given as follows:

z̃1 =
n∑
i=1

n∑
j=1

c̃ijxij , z̃2 =
n∑
i=1

n∑
j=1

t̃ijxij , z̃3 =
n∑
i=1

n∑
j=1

q̃ijxij

In this problem, quality rating of linguistic variables: ’Good’, ’Medium good’, ’Fair’, ’Medium
poor’, ’poor’ are considered as (0,1,3), (1,3,5), (3,5,7), (5,7,9), (7, 9,10) respectively. At the different
five levels, the quality of the completed jobs has been considered, where ”good” and ”poor” level
are best and worst respectively i.e. shifting from ”good” to ”poor”, the concentration of quality
decreases while related fuzzy values raises. In order to maintain uniformity of objective functions
it is necessary to minimize quality objective function [13].
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Model constraints

noindent As per the mentioned description of FMOAP, the constraints are formulated as follows:

n∑
i=1

n∑
j=1

xij = n (2.1)

n∑
i=1

xij = 1, j = 1, 2, ..., n (2.2)

n∑
j=1

xij ≤ li ; i = 1, 2, ..., n (2.3)

n∑
i=1

min

{
1,

n∑
j=1

xij

}
≥ s (2.4)

xij ∈ {0, 1} , i = 1, 2, ..., n, j = 1, 2, ..., n. (2.5)

2.2 Decision problem

The fuzzy multi-objective assignment problem is now formulated as follows:
(Model-1)

(z̃1, z̃2, z̃3) =

(
n∑
i=1

n∑
j=1

c̃ijxij ,
n∑
i=1

n∑
j=1

t̃ijxij ,
n∑
i=1

n∑
j=1

q̃ijxij

)
Subject to: (2.1) to (2.5)

3 Possibilistic Programming Approach

The collection data on real world problems generally involve some type of uncertainty. As a matter
of fact, many pieces of information cannot be quantified due to their nature. These types of the
incomplete data are modeled by possibility distribution ([35], [36],[18], [30], [37] [10], [21], [22], [14]).
We convert the FMOAP model into an auxiliary crips multi-objective optimization (CMOP) model
by the Possibilistic approach [13]. In real world DM construct the TPD by using the (cmi ),(coi ) and

Fig. 1. TPD of ci

(cpi ), most possible value, the most optimistic value and the most pessimistic value respectively.
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3.1 Formulation of multi-objective 0-1 programming model

Objective function cost with the triangular Possibilistic distribution is defined as (zm1 , 1),(zp1 , 0),
and (zo1 , 0) and it described as

min z̃1 = min(zo1 , z
m
1 , z

p
1) =

n∑
i=1

n∑
j=1

c̃ijxij =

min

(
n∑
i=1

n∑
j=1

coijxij ,
n∑
i=1

n∑
j=1

cmijxij ,
n∑
i=1

n∑
j=1

cpijxij

) (3.1)

where cij =
(
coij , c

m
ij , c

p
ij

)
, which can be considered as follows.

(min z11, min z12, min z13) =

(
n∑
i=1

n∑
j=1

coijxij ,

n∑
i=1

n∑
j=1

cmijxij ,

n∑
i=1

n∑
j=1

cpijxij

)
(3.2)

Eq.(3.2) is associated with optimistic scenario, the most likely scenario and the pessimistic scenario
respectively.

Using the α-level sets concepts (0 ≤ α ≤ 1), each cij can be stated as(cij)α =
(
(cij)

o
α , (cij)

m
α , (cij)

p
α

)
,

where(cij)
o
α = coij + α

(
cmij − coij

)
, (cij)

m
α = cmij , (cij)

p
α = cpij − α

(
cpij − c

m
ij

)
.

Hence, Eq.(3.2) can be written as:

(min z11, min z12, min z13) =

(
n∑
i=1

n∑
j=1

(cij)
o
α xij ,

n∑
i=1

n∑
j=1

(cij)
m
α xij ,

n∑
i=1

n∑
j=1

(cij)
p
α xij

)
(3.3)

Similarly, MOP model of time and quality objective function are as follows.

(min z21, min z22, min z23) =

(
n∑
i=1

n∑
j=1

(tij)
o
α xij ,

n∑
i=1

n∑
j=1

(tij)
m
α xij ,

n∑
i=1

n∑
j=1

(tij)
p
α xij

)
(3.4)

(min z31, min z32, min z33) =

(
n∑
i=1

n∑
j=1

(qij)
o
α xij ,

n∑
i=1

n∑
j=1

(qij)
m
α xij ,

n∑
i=1

n∑
j=1

(qij)
p
α xij

)
(3.5)

Here, α-levels be a sign of DM confidence with respect to fuzzy judgments, some time called as
confidence levels [13].

3.2 Auxiliary multi-objective 0-1 programming model with different
scenario

To generate the following multi-objective 0-1 programming model with different scenario, crisp
multiple objective functions are used.

Model-2:

For optimistic scenario:

(min z11,min z21,min z31) =

(
n∑

i=1

n∑
j=1

(cij)
o
α xij,

n∑
i=1

n∑
j=1

(tij)
o
α xij,

n∑
i=1

n∑
j=1

(qij)
o
α xij

)
under the constraints (2.1)− (2.5)

(3.6)

For most likely scenario:

(min z12,min z22,min z32) =

(
n∑
i=1

n∑
j=1

(cij)
m
α xij ,

n∑
i=1

n∑
j=1

(tij)
m
α xij ,

n∑
i=1

n∑
j=1

(qij)
m
α xij

)
under the constraints (2.1)− (2.5)

(3.7)
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For pessimistic scenario:

(min z13,min z23,min z33) =

(
n∑
i=1

n∑
j=1

(cij)
m
α xij ,

n∑
i=1

n∑
j=1

(tij)
m
α xij ,

n∑
i=1

n∑
j=1

(qij)
m
α xij

)
under the constraints (2.1)− (2.5)

(3.8)

4 Solution Method for Auxiliary Model

To characterize the indistinct aspiration level of the DM, fuzzy membership functions like linear,
piecewise linear, exponential, tangent etc. are used. Out of them linear membership function
is mostly used because it is defined by two fixing points: upper bound and lower bound of the
objective and also considered only a violent calculation of real world circumstances. Additionally,
membership function is used for describing the behavior of uncertain values. In such situation, non
linear membership function is offered healthy representation then others as to reflect the reality as
the marginal rate of increase of membership values as function of model parameter is not constant
[13].

GA is a most adaptive optimization search methodologies based on machine of natural genetics,
natural selection and survival of fitness in biological system. It is work by mimicking the evaluating
principle and chromosome processing in natural genetics ([32], [29], [30], [33], [38], [31], [28]). For
find the solution of FMAOP of single optimization by GA, first encode chromosomes according to
problem and define fitness function to measure the chromosomes. Thereafter apply three operators,
selection, crossover and mutation to generate the new population. Selection process is forming a
parent population for creating the next generation. Crossover process is the process of selecting two
parents of chromosomes and produces a new offspring chromosome. Mutation process is process
with mutation rate randomly alter selected positions in a selected chromosome. Thus the new
population is generated by replacing some chromosomes in the parent population with the children
population which is useful for find efficient solution of FMOAP [31].

This section presented genetic algorithm based hybrid approach for optimistic, most-likely and
pessimistic scenario FMOAP to determine the best efficient solution with use of exponential member-
ship function to characterize the indistinct aspiration levels of DM.

4.1 Steps to find the solution of FMOAP using genetic algorithm
based approach

The step-wise description of the proposed genetic algorithm based approach to find the assignment
plans of optimistic, most-likely and pessimistic scenario of the FMOAP is as follows:

Step-1: Formulate the model-1 of FMOAP, using appropriate triangular possibilities distribution.
Step-2: According to a confidence level α, define the corps objective function model (model-2).
Step-3: Find out the positive ideal solution (PIS) and negative ideal solution (NIS) [[13]] for each
objective function of the model-2.
Step-4: Find fuzzy exponential membership value for zij (i=1, 2, 3; j=1, 2, 3).

µEzij (x) =


1; if zij ≤ zPIS

ij

e
−Sψij(x)−e−S

1−e−S , if zPIS
ij < zij < zNIS

ij

0 ; if zij ≥ zNIS
ij

(4.1)

Where, ψij (x) =
zij−zPIS

ij

zNIS
ij −z

PIS
ij

and S is non-zero shape parameter given by DM that 0 ≤ µZij (x) ≤ 1 .

For S > 0 (S < 0), the membership function is strictly concave (convex) in [zPIS
ij , zNIS

ij ]. The value of
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the fuzzy membership function allows us to model the grades of precision in corresponding objective
function [2].
Step-5: In step-5, fuzzy membership functions are comprehensive by using the product operator.
Thus, FMOAP can be written in the single-objective optimization (SOP) problem with different
scenarios are as follows:

(Model-3)

Optimistic scenario:

max W =
3∏
i=1

∏
j=1

µZij

undertheconstraints(2.1)to(2.5)
µZi1 (x)− µZi1 (x) ≥ 0; i = 1, 2, 3

(4.2)

Most-likely scenario:

max W =
3∏
i=1

∏
j=2

µZij

undertheconstraints(2.1)to(2.5)
µZi2 (x)− µZi2 (x) ≥ 0; i = 1, 2, 3

(4.3)

Pessimistic scenario:

max W =
3∏
i=1

∏
j=3

µZij

undertheconstraints(2.1)to(2.5)
µZi3 (x)− µZi3 (x) ≥ 0; i = 1, 2, 3

(4.4)

where µZij (x) ; i = 1, 2, 3 ; j = 1, 2, 3 is the desired aspiration level of fuzzy goals corresponding
to each objective. The above model can be solved for varying aspiration levels of the DM regarding
the achievement of various fuzzy membership functions [12].
Step-6: To deal with the single-objective optimization problem model-3 of FMOAP, genetic
algorithm (GA) is used with different choices of the shape parameter.

• Encoding of Chromosomes:
In order to form of solution of FMOAP, it is necessary to consider a data structure of
chromosomes, which represents the solution of problem in encoding space. In encoding space,
we set 0’s to all n×n gene of a chromosomes then for randomly chosen a gene of chromosome,
we set 1’s in each column exactly one and in each row less or equal to li according to model
which satisfy constraints (1) to (5) of model-3. Each component in the string (chromosome)
can be uniquely expressed as 2r; where r is real value varying from 0 to n-1.

• Evaluate the fitness function:
In GA, the fitness function is a major question for solving FMOAP. Evaluate the objective
function of model-3 which satisfies the only constraints (14) to (16) because infeasibility
will lead by the constraints (14) to (16) and the structure of chromosomes takes care of the
constraints (5) to(1) .

• Selection:
The selection operator is used to determine which chromosome in current population will
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be used to reproduce new child for next population who will have highest fitness. It is
carefully formulated the chromosomes of population with highest fitness of being selected
for mutation/ next generation. It improves the average quality of the chromosomes of the
population for the next generation by giving the highest quality chromosomes a better chance
to get copied into ([38], [31]).

In this paper, we used tournament selection to find the solution of FMOAP due to its
efficiency and easy implementation. In tournament selection, N chromosomes are selected
randomly from the population and compare against each other. The chromosome with the
highest fitness (winner) will select for the next generation and others are disqualified for the
next generation. This selection is continued until the number of winner equal to population
size.

• Crossover:
After successfully completion of tournament selection, the crossover operator is used to
produce a new offspring for the next generation. The scheme behind the crossover is that
offspring may have better fitness then the both of the parent if it takes better characteristic
from each parent.

For FMOAP, We have used two point crossover to generate new offspring. In two point
crossover, exchange the gene values between the randomly two crossover points in two selected
parent chromosomes to generate the new offspring [38].

• Construct the threshold:
To maintain the diversity in population after crossover, construct the threshold for FMOAP’s
solution. In this step, we have parenthood population and childhood population out which
they are selected for the new iteration.

For constructing the threshold, once method of selecting the population may be to display the
whole population in ascending order of their objective function value and choose predetermined
individual strings from each category. For that we divide the population in four categories:
those having values above µ+ 3 ∗ σ , values between µ+ 3 ∗ σ and µ, values between µ and
µ−3∗σ, and values less than µ−3∗σ. In this way the best string cannot be escaped ([27, 31]).

• Mutation:
For the recovering the lost genetic materials as well as for randomly disturbing genetic
information, mutation operator is applied. In this paper, we apply swap mutation ([27],
[38],[31]) out of numerous available mutation operators. In swap mutation, two random
spots are chosen in a string and swapping corresponding values at position.

If we swap the string < 1, 2, 3, 4, 5 >at second and fourth position then the new mutate
string become < 1, 4, 3, 2, 5 >

• Termination criteria:
When the algorithm has run a given number of iterations, it stops and gives output as
the best solution. This iteration process is repeated until a termination condition has been
reached.

After developing the algorithm, two cases are implemented: one in which mutation is used and
another in which mutation is not used. In both cases the answer converged to the efficient solution
for FMOAP [27].
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If obtained solution is accepted by DM then considers it as the ideal compromise solution and stop
solution process else change value of and repeat the steps 2 to 5 till satisfactory solution achieved.

4.2 Algorithm

Input: Parameters: (Z1, Z2, ..., Zm, n)
Output :To find the solution of FMOAP
Solve FMOAP (Zk ↓, X ↑)

begin

read: example
while example = FMOAP do
for k=1 to m do
enter matrix Zk

end

-|find triangular possibilities distribution for each objective function.
-|define the crips multi-objective assignment problem according to α− level
-|determine the positive ideal solution and negative ideal solution for each objective.
for k=1 to m do
zPIS
ij = min (zi)

0
α , i, j = 1, 2, 3

Subject to constraints (2.1) to (2.5)

end

for k=1 to m do
zNIS
ij = max (zi)

0
α , i, j = 1, 2, 3

Subject to constraints (2.1) to (2.5)

end

-|Define exponential membership function for each objective.
for k=1 to m do

µEzij (x) =


1; if zij ≤ zPIS

ij

e
−Sψij(x)−e−S

1−e−S , if zPIS
ij < zij < zNIS

ij

0 ; if zij ≥ zNIS
ij

end

-|find single objective optimization model under given constraints from MOP model
according to different scenario.
For k=1 to m do

max W =
3∏
i=1

3∏
j=1

µZij

Subject to:
Constraints (2.1) to (2.5)

End

|- find the solution SOP using GA

9
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Procedure: GA

Begin

Generation=0;
P= Generate the initial population of solution.
For (X ∈ P )
Evaluate Z(X); (Z(X) is objective function of X.)

end

While (Stopping criterion not met)
{Generation=Generation+1;

Begin

-|Apply tournament selection;
For P ′ ∈ P
P’=select fitness individual from P for matting pool according to tournament
selection.
P” = φ
end

Repeat (Until enough children produced)
For P1, P2 ∈ P ′
Select P1 and P2 from P’.
Apply the two point crossover on P1 and P2 for produced new
offspring. P” = P” ∪ X child;

end

Repeat
For X ∈ P ′′
Make a threshold, to keep the best individuals.
end
For X ∈ P ′′
Apply inversion on X.

End (Begin)

P=P”;
end ( while)
end (Begin)

end

4.3 Flowchart

Fig. 2. shows the flowchart of the solution procedure of FMAOP :

10



Tailor and Dhodiya; BJMCS, 17(2), 1-19, 2016; Article no.BJMCS.26988

Fig. 2. Flowchart of the solution procedure of FMAOP

5 Numerical Illustration and Result Analysis

To justify proposed method, numerical illustration of FMOAP has been refereed from the article of
the Pankaj and Mukesh [13] which shown in Table-1. To evaluate fuzzy cost-time-quality objective
assignment problem, the model is coded. It is solved by Matlab and all tests are carried out on
an Intel (R)-core i5 CPU@ 2.60 GHz computer with 4 GB of RAM. The primary attributes for
solving the problems summarized as follows: Number of workers = Number of jobs = 6, li= 2, s=
4, population size=1000, iterations=100.

11
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Table 1. Cost-time-quality matrix

Worker(i) Job(j)

Job-1 Job-2 Job-3 Job-4 Job-5 Job-6

Worker -1
cij (4,6,8) (3,4,6) (4,5,8) ( 6,8,11) (7,10,14 ) (4,6,7 )
tij (2,4,5) (16,20,24) (7,9,12) (2,3,5) (5,8,10) ( 7,9,12)
qij (0,1,3) (1,3,5) (0,1,3) (0,1,3) (0,1,3) (3,5,7)

Worker -2
cij (4,6,7) (4,5,7) (5,6,9) (3,5,7) (6,9,11) ( 6,8,11)
tij (4,6,9) (15,18,22) (6,8,12) (5,7,10) (14,17,20) (6,8,10)
qij (1,3,5) (3,5,7) (1,3,5) (3,5,7) (5,7,9) (3,5,7)

Worker -3
cij (8,11,14) (5,7,9) (2,4,6) (5,8,12) (2,3,4) (3,4,6)
tij (2,3,4) (6,8,10) (17,20,24) (5,7,10) (12,15,18) (5,7,10)
qij (0,1,3) (5,7,9) (3,5,7) (1,3,5) (3,5,7) (5,7,9)

Worker -4
cij (7,9,12) (7,10,12) (6,8,11) (4,6,8) (8,10,12) (3,4,6)
tij (10,12,16) (10,13,16) (12,14,18) (4,6,9) (7,9,12) (8,10,14)
qij (3,5,7) (7,9,10) (1,3,5) (3,5,7) (1,3,5) (1,3,5)

Worker -5
cij (3,4,6) (4,6,8) (5,7,10) (7,9,12) (6,8,12) (5,7,10)
tij (7,9,12) (5,8,11) (5,7,10) (11,14,18) (3,5,8) (7,9,12)
qij (1,3,5) (7,9,10) (5,7,9) (3,5,7) (1,3,5) (1,3,5)

Worker -6
cij (2,3,4) (4,5,7) (8,11,15) (8,10,13) (9,12,15) (6,8,12)
tij (14,17,21) (10,13,16) (2,3,5) (3,5,8) (10,13,17) (5,7,10)
qij (1,3,5) (1,3,5) (3,5,7) (5,7,9) (3,5,7) (5,7,9)

Table-2 gives the PIS and NIS for each objective functions for α = 0.1, α = 0.5 and α = 0.9.
These values are used to define the exponential membership function. The corresponding values
are obtained in below table.

Table 2. PIS and NIS for fuzzy objective functions

α− level Solutions Objectives

z11 z12 z13 z21 z22 z23 z31 z32 z33

α = 0.1
PIS 15.8 23 32 20 29 40.7 3.9 12 22.8
NIS 46.6 61 77.2 81.8 98 118.7 31.2 42 51.9

α = 0.5
PIS 19 23 28 24 29 35.5 7.5 12 18
NIS 53 61 70 89 98 109.5 36 42 47.5

α = 0.9
PIS 22.2 23 24 28 29 30.3 11.1 12 13.2
NIS 59.4 61 62.8 96.2 98 100.3 40.8 42 43.1

Further, we present the sensitivity analysis by considering an optimistic scenario, most-likely
scenario, and pessimistic scenario of each objective individually. According to triangular possibility
distribution, the assignment plans of different scenario for FMOAP are reported in below tables
for different values of the shape parameters and different estimates of aspiration levels specified by
the DM. For each combination of the shape parameters, we presented results based on following
different estimates of the aspiration levels.

1. Case-1: (K1, K2, K3) = (-5, -1, -2);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.7, 0.8, 0.9)

2. Case-2: (K1, K2, K3) = (-5, -1, -2);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.8, 0.85, 0.7)
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3. Case-3: (K1, K2, K3) = (-5, -1, -2);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.9, 0.7, 0.8)

4. Case-4: (K1, K2, K3) = (-1, -2, -5);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.7, 0.85, 0.8)

5. Case-5: (K1, K2, K3) = (-1, -2, -5);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.8, 0.75, 0.7)

6. Case-6: (K1, K2, K3) = (-2, -5, -1);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.8, 0.85, 0.7)

7. Case-7: (K1, K2, K3) = (-2, -5, -1);
(
µZ1

(x) , µZ2
(x) , µZ3

(x)
)

= (0.9, 0.75, 0.8)

Table 3. Summary results of different scenario for each objective at α = 0.1

Case Degree of
satisfaction

Membership values(
µZ1j , µZ2j , µZ3j

) Objective values
(Z1, Z2, Z3)

Optimum allocations:

Optimistic scenario for each objective

1 0.8377 (0.9584, 0.8377, 0.9869) (27.9, 35.2, 5) x13, x14, x21, x46, x55, x62
2 0.8844 (0.9241, 0.8844, 0.9436) (31.2, 31.2, 8.1) x11, x34, x46, x55, x62, x63
3 0.9111 (0.9111, 0.9185, 0.9601) (31.2, 28.1, 7) x11, x14, x46, x55, x62, x63
4 0.8025 (0.8025, 0.8825, 0.9763) (24.8, 37.3, 12.1) x13, x36, x44, x51, x55, x62
5 0.8025 (0.8025, 0.8825, 0.9763) (24.8, 37.3, 12.1) x13, x36, x44, x51, x55, x62
6 0.9115 (0.9115, 0.9450, 0.9300) (22.7, 47.3, 7) x13, x14, x35, x46, x51, x62
7 0.9032 (0.9254, 0.9274, 0.9032) (21.8, 50.4, 8.1) x13, x34, x35, x46, x51, x62
Most-likely scenario for each objective

1 0.8691 (0.9640, 0.8691, 0.9777) (37, 43, 14) x11, x14, x23, x46, x55, x62
2 0.8691 (0.9343, 0.8691, 1) (41, 43, 12) x13, x14, x31, x46, x55, x62
3 0.8691 (0.9343, 0.8691, 1) (41, 43, 12) x13, x14, x31, x46, x55, x62
4 0.8427 (0.8636, 0.8427, 0.9883) (31, 53, 18) x13, x24, x46, x51, x55, x62
5 0.8636 (0.8636, 0.8688, 0.9709) (31, 50, 22) x13, x24, x36, x51, x55, x62
6 0.9170 (0.9419, 0.9471, 0.9170) (29, 59, 16) x13, x14, x35, x46, x51, x62
7 0.8711 (0.9303, 0.9513, 0.8711) (30, 58, 18) x14, x23, x35, x46, x51, x62
Pessimistic scenario for each objective

1 0.8611 (0.9070, 0.8611, 1) (56.3, 57.4, 22.8) x13, x14, x31, x46, x55, x62
2 0.8954 (0.8954, 0.9136, 0.9505) (57.3, 51.5, 26.8) x11, x14, x46, x55, x62, x63
3 0.8611 (0.9070, 0.8611, 1) (56.3, 57.4, 22.8) x13, x14, x31, x46, x55, x62
4 0.8135 (0.8749, 0.8135, 0.9535) (40.8, 71.3, 34.8) x11, x24, x35, x46, x53, x62
5 0.8135 (0.8765, 0.8135, 0.9800) (40.7, 71.3, 30.8) x14, x23, x35, x46, x61, x62
6 0.8667 (0.9161, 0.9452, 0.8667) (41.7, 75.1, 28.8) x14, x23, x35, x46, x51, x62
7 0.8667 (0.9052, 0.9582, 0.8667) (42.7, 71.4, 28.8) x11, x13, x24, x35, x56, x62

The Tables-3, 4 and 5 shows the summary of assignment plans for each objective at different values
of confidence level for different scenario. It also show that change in confidence level influence
spreads of the objective function i.e. as confidence level is increases, the influence of uncertainty in
the fuzzy preference of the DM decreases.

Fig. 3 shows that the variations in the degree of satisfaction of cost, time and quality objectives
corresponding to (-5, -1, -2) shape parameter at optimistic, most-likely and pessimistic scenario for
α = 0.1.
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Table 4. Summary results of different scenario for each objective at α = 0.5

Case Degree of
satisfaction

Membership values(
µZ1j , µZ2j , µZ3j

) Objective values
(Z1, Z2, Z3)

Optimum allocations:

Optimistic scenario for each objective

1 0.8766 (0.9110, 0.8766, 0.9826) (37, 36.5, 9) x14, x23, x31, x46, x55, x62
2 0.8980 (0.9178, 0.8980, 0.9342) (36.5, 34.5, 12.5) x14, x21, x46, x55, x62, x63
3 0.8820 (0.9354, 0.8820, 0.9826) (35, 36, 9) x11, x14, x23, x45, x46, x52
4 0.8456 (0.8456, 0.8713, 0.9739) (27, 43.5, 16.5) x13, x24, x36, x51, x55, x62
5 0.8456 (0.8456, 0.8713, 0.9739) (27, 43.5, 16.5) x13, x24, x36, x51, x55, x62
6 0.9059 (0.9059, 0.9586, 0.9240) (27, 49.5, 11) x13, x14, x21, x35, x46, x62
7 0.8884 (0.9203, 0.9386, 0.8884) (26, 54, 12.5) x13, x24, x46, x55, x61, x62
Most-likely scenario for each objective

1 0.8691 (0.9343, 0.8691, 1) (41, 43, 12) x13, x14, x31, x46, x55, x62
2 0.9189 (0.9241, 0.9189, 0.9522) (42, 38, 16) x11, x14, x46, x55, x62, x63
3 0.8994 (0.9343, 0.8994, 0.9522) (41, 40, 16) x13, x14, x31, x36, x55, x62
4 0.8636 (0.8636, 0.8688, 0.9709) (31, 50, 22) x13, x24, x36, x51, x55, x62
5 0.8636 (0.8636, 0.8688, 0.9709) (31, 50, 22) x13, x24, x36, x51, x55, x62
6 0.8916 (0.8916, 0.9588, 0.9170) (33, 56, 16) x13, x15, x24, x46, x51, x62
7 0.8711 (0.9052, 0.9709, 0.8711) (32, 52, 18) x11, x13, x35, x44, x56, x62
Pessimistic scenario for each objective

1 0.9080 (0.9080, 0.9158, 0.9512) (50.5, 45.5, 22) x11, x14, x46, x55, x62, x63
2 0.9080 (0.9080, 0.9158, 0.9512) (50.5, 45.5, 22) x11, x14, x46, x55, x62, x63
3 0.8245 (0.9638, 0.8245, 0.9773) (43.5, 55, 20) x13, x14, x21, x46, x55, x62
4 0.8167 (0.8167, 0.8690, 0.9698) (39.5, 58, 28) x13, x36, x44, x51, x55, x62
5 0.8405 (0.8779, 0.8405, 0.9549) (36, 61.5, 30) x11, x23, x35, x36, x44, x62
6 0.8687 (0.9219, 0.9478, 0.8687) (36.5, 67.5, 24) x14, x23, x35, x46, x51, x62
7 0.8687 (0.9219, 0.9478, 0.8687) (36.5, 67.5, 24) x14, x23, x35, x46, x51, x62

Fig. 3. The degree of satisfaction level of each objective at three different scenarios
for with (-5, -1, -2) shape parameter and (0.7, 0.8, 0.9) Aspiration level

Figs. 4, 5 and 6 shows the variation in the degree of satisfaction of the goal of cost, time and
quality objectives corresponding to a different choice of shape parameter at optimistic, most-likely
and pessimistic scenario for different values ofα. From the above figures, we also show the advantage
of the using the exponential membership function with different shape parameter in FMOAP. If
DM is not satisfied with obtaining assignment plans more plans can be generated by changing the
values of confidence level and values of shape parameters [13].
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Table 5. Summary results of different scenario for each objective at α = 0.9

Case Degree of
satisfaction

Membership values(
µZ1j , µZ2j , µZ3j

) Objective values
(Z1, Z2, Z3)

Optimum allocations:

Optimistic scenario for each objective

1 0.8684 (0.9326, 0.8684, 1) (40, 41.9, 11.1) x11, x14, x46, x55, x62, x63
2 0.9189 (0.9230, 0.9189, 0.9530) (40.9, 36.9, 15) x13, x14, x31, x55, x56, x62
3 0.8483 (0.9628, 0.8483, 0.9544) (36.1, 43.8, 14.9) x14, x21, x23, x46, x55, x62
4 0.7806 (0.7806, 0.9226, 0.9715) (34.1, 41.7, 20.9) x11, x23, x36, x44, x55, x62
5 0.8604 (0.8604, 0.8693, 0.9715) (30.2, 48.7, 20.9) x13, x24, x36, x51, x55, x62
6 0.8405 (0.8405, 0.9801, 0.9616) (35, 46.7, 13) x11, x13, x34, x46, x55, x62
7 0.8745 (0.9026, 0.9710, 0.8745) (31.2, 50.7, 16.9) x13, x34, x35, x46, x51, x62
Most-likely scenario for each objective

1 0.8793 (0.9241, 0.8793, 0.9777) (42, 42, 14) x14, x23, x31, x46, x55, x63
2 0.8691 (0.9640, 0.8691, 0.9777) (37, 43, 14) x11, x14, x23, x46, x55, x62
3 0.8793 (0.9241, 0.8793, 0.9777) (42, 42, 14) x14, x23, x31, x46, x55, x63
4 0.8636 (0.8636, 0.8688, 0.9709) (31, 50, 22) x13, x24, x36, x51, x55, x62
5 0.8046 (0.8046, 0.9148, 0.9801) (34, 44, 20) x11, x13, x36, x44, x55, x62
6 0.9170 (0.9419, 0.9471, 0.9170) (29, 59, 16) x13, x14, x35, x46, x51, x62
7 0.9003 (0.9529, 0.9003, 0.9170) (28, 67, 16) x13, x14, x35, x46, x61, x62
Pessimistic scenario for each objective

1 0.8671 (0.9623, 0.8671, 0.9776) (38.6, 44.7, 15.2) x11, x14, x23, x46, x55, x62
2 0.8681 (0.9313, 0.8681, 1) (42.7, 44.6, 13.2) x13, x14, x31, x46, x55, x62
3 0.9183 (0.9209, 0.9183, 0.9520) (43.7, 39.5, 17.2) x11, x14, x46, x55, x62, x63
4 0.8575 (0.8575, 0.8672, 0.9707) (32.5, 51.8, 23.2) x13, x24, x36, x51, x55, x62
5 0.8575 (0.8575, 0.8672, 0.9707) (32.5, 51.8, 23.2) x13, x24, x36, x51, x55, x62
6 0.8719 (0.8719, 0.9774, 0.9597) (35.6, 50.8, 15.2) x13, x14, x46, x51, x55, x62
7 0.8707 (0.9011, 0.9702, 0.8707) (33.5, 53.9, 19.2) x13, x44, x46, x51, x55, x62

Fig. 4. The degree of satisfaction of optimistic case of each objective at and
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Fig. 5. The degree of satisfaction of most likely case of each objective at and

Fig. 6. The degree of satisfaction of pessimistic case of each objective at and

The genetic algorithm based hybrid approach gives flexibility and large collection of information in
sense of changing the α level as well as changing the shape parameters in exponential membership
function and also provides the different scenario analysis to DM for fuzzy allocation strategy. This
approach also treated three objectives consistently. For example, cost, time and quality objective
assignment problem, DM gives the priority to the cost objective in determining the period of
allocation plan; the solution is chosen by DM which satisfies the cost objective function most than
others. However, it can be causes by poor performance of the degree of satisfaction level of one
objective may be compensated by the good performance of others. Hence, the DM can choose
different solution in different situation, according his \her help ([12],[13]).
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6 Conclusion

Genetic algorithm based hybrid approach provided the solution of optimistic, most likely and
pessimistic scenarios of fuzzy multi-objective assignment problem using exponential membership
function with subject to some realistic constraints with triangular possibilistic distribution. The
developed hybrid approach provided flexibility in a different situation for the DM and also provided
better assignment plans as per the scenario.
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