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Abstract 
 

In this paper, we are interested in studying the stability of the equilibrium points of harvesting of a prey-
predator system with time delay in the growth rate of the predator population. Firstly, we state the 
formulation of the model. Secondly, we drive different conditions stability of the equilibrium of the 
system, respectively. Constant effort harvesting of the prey has been incorporated in the model to cater 
for the effects of human poaching. Finally, we illustrate our results by some examples. The objective of 
this paper is to study the effects of harvesting and time delay on the dynamics of predator-prey system. 
 

 

Keywords: Prey-predator model; time delay; harvesting; stability. 
 

1 Introduction 
 
Prey-predator interaction is the fundamental structure in population dynamics. Understanding the dynamics 
of predator-prey models is very helpful for investigating multiple species interactions. The prey-predator 
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interaction has been described firstly by two pioneers Lotka [1] and Volterra [2] in two independent works. 
The Lotka-Volterra system is one of the most predator-prey systems to be based on sound mathematical 
principles. It forms the basis of many systems used today in the analysis of population dynamics. One of the 
models examined after Lotka-Volterra model is due to Clark [3]. In this model, prey-predator harvesting is 
applied on predator population as well as prey population, which grow logistically. Most of the existing 
prey-predator mathematical based models are developed and formulated considering the diversity of interest 
scenarios such as Holling Type functional responses [4], ratio-dependent functional responses [5,6], bio-
economic exploitation or harvesting [7], and stage or age structured [8,9]. 
 
The subject of harvesting in predator-prey systems has been of interest to economists, ecologists and natural 
resource managers for some time now. Harvesting has a strong impact on the dynamic evaluation of a 
population subjected to it. Effects of harvesting on various types of prey-predator models have been 
considered by many researchers [10-15]. Mathematical modeling with harvesting renewable resources 
started with the studies of Clark [16,17] has investigated the dynamics of a system with constant harvesting 
on the predator. The problem of harvesting with time delay in the predator-prey system is an important for 
study. In general, delay differential equations are more complicated dynamics than ordinary differential 
equations as time delay could cause a stable equilibrium to become unstable.  
 
In this paper, we present a deterministic and continuous model for prey-predator population based on Lotka-
Volterra model which is extended by incorporating time delay in the growth rate of the prey population and 
constant rate of harvesting of the predator population. The constant rate of harvesting could put the predator-
prey system to none, or at least positive equilibrium points. The objective of this paper is to study the effects 
of harvesting and time delay on the dynamics of predator-prey system. 
 
The rest of this paper is organized as follows: Section 2 discusses a general description of a prey-predator 
system. In section 3, we extend the prey-predator system to include harvesting. In section 4, we integrate the 
concept of time delay in prey-predator system with harvesting. A brief concluding remark is given in      
Section 5. 
 

2 A Prey-Predator System  
 
Let in an eco-system there are only two types of animal namely: The prey and the predator. They from a 
simple food-chain where the prey species grazes vegetation, while the predator species hunts the prey 
species. The size of the two populations can be described by a simple system of two nonlinear first order 
differential equations (a.k.a. the Lotka-Volterra equations). 
 
Consider �(�) denotes the population of the prey species and �(�) denotes the population of the predators 
population species at any time �. Then 
 

��(�)

��
= ��� − ���  

 
��(�)

��
= − ��� + ���                                                                           (1) 

 
where �� is the maximum rate of the prey population, �� is the relative rate at which the predators die out in 
absence of prey, � measures the rate consumption of prey, and � measures the conversion of prey consumed 
into the predators reproduction rate. 
 
It is worth mentioning that in the absence of the predator (i.e., � = 0), the prey population would grow 
exponentially. However, if the preys are absence (i.e., � = 0 ), the predator population would decay 
exponentially to zero due to starvation. One obvious shortcoming of the basic prey-predator system is that 
the population of the prey species would grow unbounded, in the absence of predators.  
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Das et al. [10] modified the basic prey-predator system given (1) incorporating the effect of toxic substances 
in a two species Lotka-Volterra competitive system as,  
 

��(�)

��
= ����1 −

�

�
� − ���  

 
��(�)

��
= − ��� + ���                                                                          (2) 

 
The system includes parameter � is the prey population in the absence of the predators.  
 

The equilibrium points of system (2) occur when 
��

��
= 0 and 

��

��
= 0. 

 
i.e., 
 

� ��� �1 −
�

�
� − ��� = 0 

 
�(− �� + ��) = 0                                                                          (3) 

 
Solving the equations of system (3), then we can arrive into the following cases: 
 
Case 1. When � = � = 0, the first equilibrium point is �� = (0, 0). 

 
Case 2. When � = � and � = 0, the second equilibrium point is �� = (�, 0). 

 
Case 3. If � ≠ 0, then from the first equation in system (3), we have  
 

���1 −
�

�
� − �� = 0                                                                           (4) 

 
Also if � ≠ 0, then from the second equation in system (3), we have  
 

− �� + �� = 0, or, � = ��
���
(�� − ��)                                                                       (5) 

 

Thus, the third equilibrium point is �� = �
��

�
, ��
���
(�� − ��)�  

 

Let �(�, �) = �����1 −
�

�
� − ���, and	�(�, �) = �(− �� + ��). Then, the value of the Jacobian matrix of 

system (2) is 
 

�(�, �) = �
�� −

����

�
− �� − ��

�� − �� + ��
�                                                         (6) 

 
Definition 1. Let �:ℝ� → ℝ�  be a function with continuous first derivatives. The Jacobian of the function � 
is the matrix � whose entries are given by ���/���, where ��  is the ith entry in � and ��  is the jth independent 

variable. 
 
Theorem 1. Suppose �:ℝ� → ℝ� is nonlinear, with continuous first derivatives, and �� is a critical point of 
the nonlinear system � ′ = �(�). 
 

1. If all eigenvalues of the Jacobian matrix �(��) have negative real parts, then the critical point �� is 
asymptotically stable. 

2. If any eigenvalue of the Jacobian matrix �(��) has a positive real part, then the critical point ��  is 
unstable. 
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So that, we arrive into the following Theorems to study the stability of equilibrium points of system (2). 
 
Theorem 2. The equilibrium point �� of system (2) is asymptotically stable provided that �� > 0 and �� > 0. 
 
Proof. The Jacobian matrix of system (2) as in equation (6). 
 
Substituting the equilibrium point ��  of system (2) into the Jacobian matrix of system (6). Then 
 

�(��) = �
�� 0
0 − ��

� 

 
The characteristic equation of the Jacobian matrix at �� is ���(�(��) − ��) = 0. 
 
Therefore, the eigenvalues are �� = ��, �� = − �� as �� is a diagonal matrix. 
 
From the conditions in Theorem 2, note that the eigenvalues are negative as in Theorem 1. This completes 
the proof. 
 
Theorem 3. The equilibrium point ��  of system (2) is asymptotically stable provided that �� > 0  and 
�� > ��. 
 
Proof. The value of the Jacobian matrix of system (2) is given in equation (6). 
 
Now, the value of the Jacobian matrix of system (2) at the equilibrium point �� of system (2) is 
 

�(��) = �
− �� ��
0 − �� + ��

� 

 
Therefore, the characteristic equation of the Jacobian matrix at �� is ���(�(��) − ��) = 0. 
 
Therefore, the eigenvalues are �� = − ��, �� = − �� + �� as �� is an upper matrix. 
 
From the conditions in Theorem 3, we have that the eigenvalues are negative as in Theorem 1. This 
completes the proof. 
 
Theorem 4. The equilibrium point �� of system (2) is asymptotically stable provided that � < 0,	� < 0, 
�� > 0 and �� > 0. 
 
Proof. The value of the Jacobian matrix of system (2) is given in equation (6). Thus, the value of the 
Jacobian matrix of system (2) at the equilibrium point �� of system (2) equal to 
 

�(��) = �
�� −

�����
��

− (�� − ��)
��
��

����
�

(�� − ��)
��
��

0
� 

 
Thus, the characteristic equation of the Jacobian matrix at �� is ���(�(��) − ��) = 0. Therefore, 
 

���(�(��) − ��) = ��� ��
�� −

�����
��

− (�� − ��)
��
��

����
�

(�� − ��)
��
��

0
� − �

� 0
0 �

�� = ��� + �

��
����� −

�

��
����

� + ����� = 0  

 

Let � =
�

��
����  and � = �

�

��
����

� + ���� , then the characteristic equation of the Jacobian matrix at ��  is 

�� + �� + � = 0. 
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Then, the roots of the characteristic equation of the Jacobian matrix at �� are 
��±������

�
. From the conditions 

in the Theorem 4, note that the eigenvalues have negative real parts as in Theorem 1. This completes the 
proof. 
 
Example 1. Consider system (2) with parameters �� = − 0.8, � = 100, � = 0.2,	�� = 0.05,  and � = 0.1. 
The equilibrium points of system (3) are �� = (0,0), �� = (100,0), and �� = (0.5, − 3.98). The eigenvalues 
for the Jacobian matrix at the equilibrium point �� are − 0.8 and − 0.05, since both are negative, therefore �� 
is asymptotically stable. The eigenvalues for the Jacobian matrix at the equilibrium point �� are 0.8 and 
9.95, since both are positive, which implies that �� is unstable. The eigenvalues for the Jacobian matrix at 
the equilibrium point �� are − 0.19751 and − 0.20151, since one of them is positive, thus �� is unstable. 
The direction field for the equilibrium points of system (2) with the parameters is shown in the following 
Figs. 1, 2 and 3. From Figs. 1 and 2 we note that the equilibrium points �� and �� are both unstable, but the 
equilibrium point �� is asymptotically stable as in Fig. 3. 
 

  
 

Fig. 1. Direction field for �� Fig. 2. Direction field for �� Fig. 3. Direction field for �� 
 

3 A Prey-Predator System with Constant Rate of Harvesting 
 
The prey-predator systems with harvesting have received a great deal of attention for the last few decades. 
Let the rate of harvesting for predator population in system (2) constant. Then 
 

��(�)

��
= ���(1 − ��) − ���  

 
��(�)

��
= − ��� + ��� − ��                                                                                        (7) 

 
where ��, � =

�

�
, �, ��, ���	�	are positive constants and ��   is nonnegative. The constant ��   is the rate of 

harvesting for the predator. 
 

The equilibrium points of system (7) occur when 
��

��
= 0 and 

��

��
= 0, 

i.e.,  
 

���(1 − ��) − ��� = 0 
 

− ��� + ��� − �� = 0                                                                         (8) 
 

Accordingly, the following cases can be obtained:  
 

Case 1. From system (7), we have ���(1 − ��) − ��� = 0  
    

If �� ≠ 0, � ≠ 0, � = 0,�� = 0 in equation (3.3), then ���(1 − ��) = 0 
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Thus, the equilibrium points is � = ��
�
, 0�. 

 
Case 2. From system (7), we have − ��� + ��� = �� . 
 

If � = 0, � ≠ 0,�� ≠ 0 in equation (8), then − ��� = ��  which implies that � =
��

���
 

 

Thus, the equilibrium points is � = �0,
��

���
�. 

 
Case 3. If �� ≠ 0, say for example � = �

�
, � ≠ 0,	�� ≠ 0 in equation (8) then − ��� + ��� = �� , that is, 

� =
��

������
. Thus, the equilibrium points is � = ��

�
,

��

��
���

�
�

�. 

 

The Jacobian matrix for the system (7) is  �(�, �) = �
�� − �������� ���

�� − �� + ��
�. 

 

The value for �(�, �) at � = ��
�
, 0� is �(�, �) = �

�� − ��� ��
��
���

0 − �� + �
��
���

� = �
− �� ��

�
�

0 − �� + �
�

�

�.  

 
The characteristic equation of the Jacobian matrix at � is ���(�(�) − ��) = 0.  
 
Thus, 
 

���(�(�) − ��) = ��� �
�� − � −���
0 − �� + �

�

�
��
� = �� + �� +� = 0                              (9) 

 
where � = �

�
(����������), and � = ���� −

�

�
���. 

 

The root of characteristic equation (3.10) are �± =
��±������

�
  

 
The roots of equation (9) have negative real parts if � > 0, and � > 0. 
 
Thus, we introduce the following theorem: 
 
Theorem 5. The equilibrium point �  of system (7) is asymptotically stable when the following conditions 
are satisfied � > 0, and � > 0. 
 

The value for �(�, �) at � = �0,
��

���
� is (�, �) = �

�� − �
��

���
0

�
��

���
− ��

� .  

   

The characteristic equation of the Jacobian matrix at �  is ���(�(�) − ��) = 0.   
 

Thus,  
 

���(�(�) − ��) = ��� �
�� − �

��
���
− � 0

− ���
���

− �� − �
� = �� + ��� + �� = 0                          (10) 

 
where �� = �� − ���� −

�
���
�� , and �� = − ���� − ���.   

 

The roots of characteristic equation (9) are �± =
���±���

�����

�
 . 
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The roots of equation (9) have negative real parts if �� > 0, and �� > 0. 
 
Thus, we introduce the following theorem: 
 
Theorem 6. The equilibrium point �  of system (7) is asymptotically stable when the following conditions 
are satisfied if �� > 0, and �� < 0. 
 
The value for �(�, �) at � = (��, ��) is 
 

�(�) = �
�� − 2��� − ��� − ���

��� − �� + ���
�    

 
The characteristic equation of the Jacobian matrix at �  is 
 

���(�(�) − ��) = 0   
   

Thus,  
 

���(�(�) − ��) = ��� �
�� − 2��� − ��� − � −���

��� − �� + ��� − �
� = �� + ��� + �� = 0                (11) 

 
where �� = �� + �� − ��� + ���, and �� = ����� + ����� − 2����

�− ���� + 2��� + 2�����.   
 

The roots of equation (11) are �± =
���±���

�����

�
.   

 

Then equation (11) has negative parts if and only if �� > 0 and �� < 0. Therefore the equilibrium point � is 
asymptotically stable when �� > 0 and �� < 0. Thus, we introduce the following theorem. 
 

Theorem 7. The equilibrium point � of system (7) is asymptotically stable when the following conditions 
are satisfied �� > 0 and �� > 0. 
 

Example 2. Consider system (7) with parameters �� = 1, � = 1, � = 1,	�� = 0.5, � = 1, and �� = 1. The 

equilibrium points of system (7) are �� = (1, 0), �� = (0, − 2), and �� = (1, 2). The eigenvalues for the 
Jacobian matrix at the equilibrium point �� are 0.5 and − 1, note that one of them is positive, which implies 
that ��  is unstable. The eigenvalues for the Jacobian matrix at the equilibrium point ��  are 2.5811  and 
−0.58114, note that one of them is positive, which implies that �� is unstable. The eigenvalues for the 
Jacobian matrix at the equilibrium point ��  are − 0.25 + 1.5612�  and − 0.25 + 1.5612� , which have 
negative real parts, thus �� is unstable. The direction field for the equilibrium points of system (7) with the 
parameters is shown in the following Figs. 4, 5 and 6.  
 

 
  

 

Fig. 4. Direction field for �� 
 

Fig. 5. Direction field for �� 
 

Fig. 6. Direction field for �� 
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4 A Prey-Predator System with Time Delay 
 
Now we consider the prey-predator system with time delay � into the prey population in system (7) and 
constant rate of harvesting of predator population. 
 
The system with time delay takes the form 
 

��(�)

��
= ���(�) − ��

�(�) − ��(�)�(� − �)  

 
��(�)

��
= − ���(�) + ��(�)�(�)                                                                          (12) 

 
Assume that �(��, ��) is a positive equilibrium point for system (12). Then, we study the stability of system 
(12) at �. 
 
Now linearize system (12) about the equilibrium point � as follows:  
 

Assume that �(�) = �(�) − �� and �(�) = �(�) − ��, then 
��

��
=

��

��
, and 

��

��
=

��

��
 

 
Let �(�, �) = ���(�) − ��

�(�) − ��(�)�(� − �), �(�, �) = − ���(�) + ��(�)�(�) 
 
Thus, the linearization for system (12) at �(��, ��) is 
 

��

��
=
��

��
(�∗)�(�) +

��

��
(�∗)�(� − �) 

 
��

��
=

��

��
(�∗)�(�) +

��

��
(�∗)�(�)      

 
i.e., the linearization for system (4:1) is  
 

��

��
= (�� − 2��� − ���)�(�) − ����(� − �) 

 
��

��
= ����(�) + (− �� + ���)�(�)                                                                       (13) 

 

The characteristic equation of system (13) is ∆(�, �) = ������ − �� − ∑ ���
�����

��� �. 

 

where �� = �
�� − 2��� − ��� 0

��� − �� + ���
�  and �� = �

0 −���
0 0

�. Thus,  

 

∆(�, �) = ��� ��
� 0
0 �

� − �
�� − 2��� − ��� 0

��� − �� + ���
� − �

0 − ���
0 0

� ����� =

�
� − �� + 2��� + ��� ����

���

−��� � + �� − ���
�  

 
which implies that 
 

�� − �� − ����� + � = 0                                                                                                                (14) 
 

where � = �� − �� − 2��� + ��� − ��� , � = −������ , and � = − ���� + 2����� + ����� + ����� −
2����

� − ������. 
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Let � = 0 in the characteristic equation (14), then we have 
 

�� − �� + � = 0                                                                                      (15) 
 

The roots of equation (15) are �± =
��±������

�
 . 

 
Thus, equation (15) has negative real parts if and only if the following hypotheses hold: 
 
Hypothesis 1. � < 0 
 
Hypothesis 2. � > 0 
 
Thus, the equilibrium point � is locally asymptotically stable if both conditions are satisfied � < 0, � > 0. 
 
Suppose that � ≠ 0  in the characteristic equation (14), if � = ��� , �� > 0	 is a root of the cahracterstic 

equation (14), then substitute the value of � and the value of ����� = ����(���) − �	���(���)�	into equation 
(14), we get 
 

−��� − ���� − �	���(���) − ��	���(���) + � = 0                                                                     (16) 
 

Separate the real and imaginary parts of equation (16), then −��� + � − �	���(���) = 0  and −��� −
�	���(���) = 0. 
 
which implies that, 
 

 −��� + � = �	���(���), and −��� = �	���(���)                                                                 (17) 
 

Square both sides of equations (17) respectively. Then, we get 
 

��� − 2���� + �� = ��	����(���), and  ����� = ��	����(���)                                                     (18) 
 

Adding above equations (18) yields 
 

��� − (2� − ��)��� − �� + �� = 0                                                                       (19) 
 

The roots for equation (19) are 
 

���± =
�������±�(�����)���(������)

�
  

 
Therefore, if the following hypothesis hold. 
 
Hypothesis 3. {(2� − ��) < 0	���	(− �� + ��) > 0} or (2� − ��)� < 4(− �� + ��).  
 
Thus equation (19) does not have any positive roots. Therefore, equation (14) does not have purely 
imaginary roots. As Hypotheses 1 and 2, ensure that all roots of equation (15) have negative real parts, it 
follows that, by Rouch´e’s Theorem [18], the roots of equation (14) have negative real parts. 
 
Thus, we have the following lemma, where the proof can be found in [19]. 
 
Lemma 1. If Hypotheses 1, 2 and 3 are satisfied then, all roots of equation (14) have negative real parts for 
all � ≥ 0. 
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Also, if following hypothesis hold: 
 
Hypothesis 4. {(2� − ��) < 0	���	(− �� + ��) > 0} and (2� − ��)� = 4(−�� + ��). Then equation (19) 
has a positive root ��±

� . 
 
On the other hand, if the following hypothesis satisfied: 
 
Hypothesis 5. {(2� − ��) < 0	���	(− �� + ��) > 0} and (2� − ��)� > 4(−�� + ��). Then equation (19) 
has two positive root ��±

� . In both cases equation (14) has purely imaginary roots when ��  takes certain 
values. 
 
Now, we are going to determine the values of ��  as follows: 
 
Dividing equations (17), yields 
 

���(����) =
���(���)

���(���)
= ���

�����
                                                                                                (20) 

 
Apply ����� for both sides of equation (20), then 
 

(����) = ���
��� ���

�����
� + 2��, � = 0,1,2, …                                                        (21) 

 
Equation (21) can be reduced to 
 

�� =
�

��
����� ��������

�������������

�����������
��������

� + 2��
�

��
, � = 0,1,2, …                                                    (22) 

 
Substitute ��±

�  into equation (22), then  
 

�� =
�

��±
������ ���

�����
� + 2��

�

��±
, � = 0,1,2, …                                                                             (23) 

 
The above discussion can be summarized into the following lemma, where the proof can be found in 
Cushing and Saleem [19]. 
 
Lemma 2. i) If Hypotheses 1, 2 and 4 are hold and � = ��

�, then equation (14) has a pair of purely imaginary 

roots ±����. ii) If Hypotheses 1, 2 and 5 are hold and � = ��
� , then equation (14) has a pair of purely 

imaginary roots ±����. 
 
To find the necessary and sufficient conditions for non-existence of time delay induced instability, we 
introduce the following theorem:  
 
Theorem 8. For an equilibrium point �∗ to be asymptotically stable for all � > 0, if the following conditions 
are satisfied Kar [3]: 
 

1) The real parts of all roots of equation ∆(�, 0) are negative, 

2) For all real �� and � ≥ 0,	∆(���, �) ≠ 0, where � = √−1 
 
Now, we arrive to the following theorem. 
 
Theorem 9. If the following conditions � < 0, � < 0 are hold, then the equilibrium point � of system (14) is 
locally asymptotically stable for all � ≥ 0. 
 

For the proof of the transversality conditions: �
��
����

����
�� > 0, and �

��
����

����
�� < 0. 
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We differentiate both sides of equation (14) with respect to � 
 

�� − �� − ����� + � = 0 
 

2�
��

��
− � �− �����

��

��
− �����

��

��
� − �

��

��
= 0 

 
which implies that 
 

�2� + ������ − ����
��
= ������                                                                      (24) 

 

Solve equation (24) for  
��

��
, we arrive at ��

��
=

�������

�������������
 . 

 

But �
��

��
�
��

= �
��
��

, thus ���
��
�
��
=

������������

������
  

 
which implies that 
 

�
��

��
�
��
=

�����

������
−
������

������
                                                                                        (25) 

 
Equation (25) can be simplified as 
 

�
��

��
�
��
=

�����

������
−
�

�
                                                                       (26) 

 
From equation (14), we have 
 

���� =
�������

�
                                                                                   (27) 

 
Substitute equation (27) into equation (26), yields 
 

�
��

��
�
��
=

�����

�(�������)
−
�

�
  

 
We know that,   
 

 ������(���)
��
|����� � = ���� ��� �

��

��
�
��
|����� �   

 
Therefore, 
 

������(���)
��
|����� � = ���� ��� �

�����

�(�������)
� |����� − �� �

�

�
� |����� �                                                 (28) 

 

Now, we evaluate the following to compute ������(���)
��

|����� �: 

 

1)  The value of	�� �
�����

�(�������)
� |�����  is as follows: 

 

�� �
�����

�(�������)
� |����� = �� �

�������

���(����������)
� = �� �

�����

���(����������)
� + �� �

��

���(����������)
�  
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but, 
 

�� �
�����

����(����������)
� = �� �

�

����������
���

��������

����������
�� = �� �2 �

����������

(�����)�������
�� = 2 �

�����

(�����)�������
�  

 
and, 
 

�� �
�

����(����������)
� = �� �

�

�����(������)���
����

�������������

����������������
�� =

��

������(������)�
  

 
Therefore, 
 

�� �
����

�(�������)
� |����� =

��������
�
���

(�����)�������
                                                                                               (29) 

 

2) The value of �� �
�

�
� |�����  is as follows: 

 

�� �
�

�
� |����� = �� �

�

���
�����
����
�� = 0                                                                        (30) 

 
Substitute equations (29) and (30) into equation (28), we arrive at 
 

��������(�)
��

� = ���� �
��������

�
���

(�����)�������
� = ����{2(��� − �) + ��}                                                      (31) 

 

Theorem 10. Let ��
± be defined as in equation (23), if the following conditions: 

 
i)  �� − �� − ����� + � = 0. 
 
ii)  {(2� − ��) < 0	���	(− �� + ��) > 0}, ���	(2� − ��)� > 4(− �� + ��)  are both satisfied, then 

the equilibrium point � is stable when	� ∈ [�0, ��
�) ∪ [���

�, ��
�) ∪ …	� ∪ [�����

� , ��
� )�� and unstable when 

� ∈ ����
�, ��

�� ∪ ����
�, ��

�� ∪ …	� ∪ [�����
� , ����

� )�� for some positive integer �. 

 
Proof. As the conditions in the theorem are satisfied, then we need only to verify the transversality 
conditions that are given by 
 

���(�)

��
|����

� > 0	���
���(�)

��
|������ > 0 

 
���(�)

��
|����

� > 0	���
���(�)

��
|������ > 0 

 
From equation (19) and equation (31), it follows that: 
 
From the conditions in Theorem 10, we have, 
 

(2� − ��)� > 4(−�� + ��) 
 

Thus, �(2� − ��)� − 4(− �� + ��) > 0 
 

which implies that ���� ��(2� − ��)� − 4(− �� + ��)� > 0. 
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Therefore, 	���� �
����(�)�

��
|������,����� > 0. 

 

Now,  ���� �
����(�)�

��
|����� � = ����{2(��

� − �)� + ��}=���� ��(2� − ��)� − 4(− �� + ��)� > 0.  

 
From the conditions in the Theorem 10, we have, 
 

(��
� + 2�� − ��

�)� > 4(−��
� + ��

�) 
 

Thus,                ���� ��(2� − ��)� − 4(− �� + ��)� > 0 

 

which implies that ���� �−�(2� − ��)� − 4(− �� + ��)� < 0 

 

Therefore,            	���� �
����(�)�

��
|������,����� < 0 

 
Thus, the transversability conditions are satisfied. This completes the proof. 
 
Example 3. Consider system (12) with parameters �� = 1,	�� = 0.5, � = 1, � = .05,	� = 0.01, and �� = 0. 
The equilibrium point of system (12) is (10, 0.9) . For � = 0 , the Jacobian matrix of system (12) at 
(1.2, 1.52) has eigenvalues given by {− 0.132 − 0.40617�, − 0.132 + 0.40617�}. Note that the eigenvalues 
have negative real parts, thus the equilibrium point (1.2, 1.52) is eigenvalues stable.  
 
When � ≠ 0 we have: � = 4.4,	� = − 4.5, and � = − 0.45. 
 
Now substitute the values of � , � ,and �  into equation (4:16), then we obtain: ���

� = 4.6017  and ���
� =

−4.40576. 
 

Take the square root of ���
�, then ��� = √4.8286 = 2.1974. 

 
Substitute the value of �, �, � and ��� into equation (23), then the value of the first time delay is given by: 
��
� = 0.16353, and ��

� = 1.5282. 
 
The critical value of time delay is � = ��

� = 0.16353. When � < 0.16353, the equilibrium point (10, 0.9) is 
asymptotically stable, when � = 0.16353, the equilibrium point (10, 0.9) may loss its stability, and when 
� > 0.16353, the equilibrium point (10, 0.9) is unstable. The Figs. 7 and 8 clearly indicate that equilibrium 
points (10, 0.9) are asymptotically stable when � = ��

� = 0.16353 and � = ��
� = 1.5282 respectively. 

 

  
 

Fig. 7. Solution curve with ��
� = �. ����� 

 
Fig. 8. Solution curve with ��

� = �.���� 
 

5 Concluding Remark 
 
Prey-predator models are of great interest to researchers in mathematics. Simple models such as the Lotka-
Volterra are not able to tell us what is going on in the majority of cases. This can be attributed to the 
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complexity of the biological ecosystem. Therefore, it is imperative to clearly understand the biological 
ecosystem and, hence, the urgency to develop a model.  
 
The study was based on formulating a mathematical model to study the dynamics of the population densities 
of the prey-predator system. In the presented prey-predator models, the existence of the equilibrium points 
and the stabilities had been investigated. Depending on the values of the parameters, several possibilities 
were investigated. The equilibriums were obtained for a set of values of the parameters.  
 
Finally, there is still a lot of work to do in prey-predator models with time delay and harvesting. The 
extension of the presented prey-predator models, which accommodates the effect of both delays and 
harvesting, is an ongoing challenge that stimulates more future research efforts. 
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