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ABSTRACT
The aim of this paper is to decide on heavy metal levels based 
on ecological parameters by effectively eliminating common 
disadvantages such as high cost and serious time-consuming 
laboratory procedures via an effective artificial intelligence 
approach. Therefore, this study is hinged on an artificial intelli
gence technique, ANN, because of its low cost and high accu
racy in overcoming the mentioned limitations and obstacles in 
the determination process of the amounts of elements. The 
ANNs have thus been employed to determine essential heavy 
metals, such as Fe, Mn, and Zn depending on Ca, K, and Mg 
concentrations of soil samples obtained from different altitudes 
in Mount Ida. To the best knowledge of the authors, this is the 
first study in the literature in which altitude was considered as 
a parameter in the prediction of nutrient heavy metals. The 
computed relative errors are significantly low for each of the 
considered elements (Fe, Mn, and Zn); and are found to be 
between 1.0–4.1%, 1.0–4.2%, 1.5–7.1%, respectively, for the 
training, testing, and holdout data. The findings indicate that 
the relative errors could still be decreased further by assuming 
the altitude as a factor variable.
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Introduction

The amount of nutrient elements in the soil is of great importance for plants 
since the supplies and variety of these elements provide plenty and richness of 
the vegetation. In this respect, the Mount Ida, which has become a national 
park because of the abundance of vegetation and the biodiversity it provides 
therein, contains environmentally significant examples of various plant flora. 
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The analytical elemental analysis instruments utilized to determine the 
amount of the elements in soil and plants have various difficulties and 
limitations.

The presence of nutrient elements in the soil is a necessity for plants (Arefi, 
Kafi, and Khazaei 2013). Elements that are characterized as macro elements such 
as nitrogen (N), phosphorus (P), calcium (Ca), potassium (K), and magnesium 
(Mg), whose rates of appearance in the soil are higher than many other 
elements, contribute greatly to the plant diversity in the habitat (Can et al. 
2021). Considering the importance of macro elements, it is necessary to know 
how much they are in the soil (Yahia, García-Solís, and Celis 2019).

Determination of the amounts of elements in soil and plants is tradition
ally performed with elemental analysis instruments such as Atomic 
Absorption Spectrophotometer (AAS), Inductively Coupled Plasma Mass 
Spectrometer (ICP-MS), and Inductively Coupled Plasma Optical Emission 
Spectroscopy (ICP-OES) (Alam, Ahmed, and Howladar 2020; Dan-Badjo 
et al. 2019; Sayo, Kiratu, and Nyamato 2020; Yalcin et al. 2020). In addition 
to the conventional analytical methods, various mathematical models, and 
artificial intelligence techniques, including ANNs, are also utilized regarding 
the prediction of the amounts of stated elements (Marković et al. 2016; 
Zhang et al. 2020; Zhou et al. 2015).

Environmental components such as air, water, and soil are pollutant 
receptors of large amounts from multiple sources, and therefore they can 
be used to study the origin and properties of the pollution (Alengebawy et al. 
2021; Emenike et a. 2020). Environmental factors such as air, water, and soil 
are susceptible to contamination due to various pollutant effluents and 
substances, and consequently, are prone to create severe ambiguities in risk 
assessment, decision making, and management processes (Suarez-Paba, 
Cruz, and Munoz 2020). Soil pollution is accepted as an important risk 
indicator especially in woodlands since it paves the way to severe dangers 
for health and the environment (Hossen et al. 2021; Jiang et al. 2021; Wu 
et al. 2021). Elemental analysis, among the different soil quality indicators, 
comes to the forefront as a traditional but efficient method to assess the 
extent of soil contamination. However, experimentally measuring the corre
lation between soil properties and elemental concentration of pollutants are 
both time-consuming and costly. Moreover, it seems impossible to simulate 
all naturally occurring variants with the highest accuracy.

In the use of elemental analysis instruments that are accepted as tradi
tional methods, there are a lot of difficulties such as costs arising from the 
excessive use of consumables such as acid and pure gas, the need for 
providing appropriate temperature, humidity, cleaning conditions in the 
environment where the device is located, the device operator costs based 
on elapsed analysis times for each element, and deduction limits (Pearce 
et al. 2004; Vera et al. 2021). However, the mathematical modeling tools, 
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especially artificial intelligence techniques, outstand as important alterna
tives to save time and costs. In this respect, there are studies in the literature 
reporting that ANNs could make more accurate predictions as compared to 
the traditional methods (Inakollu et al. 2009; Mojid, Hossain, and Ashraf 
2019; Olawoyin et al. 2013; Shadrin et al. 2020). The existing studies in the 
literature on element analysis include mathematical models regarding long 
time periods like the effects of environmental pollution in the long run 
mostly from a temporal viewpoint (Bui, Bui, and Nguyen 2021; Jia, Dong, 
and Du 2020; Jiang, Nan, and Yang 2013; Li et al. 2021; Oonk and Spijker 
2015). To the best knowledge of the authors, the ANNs have not been used 
by taking into account the spatial-data viewpoint as in this study before to 
obtain the amounts of ingredients like heavy metals in soil. The most 
prominent aspect of this research is to assure that it is possible to obtain cost- 
effective results as compared to the derived results by using the conventional 
device-based techniques by performing fewer amount of elemental analysis 
via an artificial intelligence technique based on ANNs.

Since they involve an adaptable and flexible structure consisting of 
layers and neurons, ANNs can identify and classify complex nonlinear 
relationships between input and output datasets. Therefore, ANN is 
a powerful technology for modeling the complex “input-output” relation
ship (Chen et al. 2019). ANN is also a technique with flexible mathema
tical structure that could be developed by inspiration from biological 
neural networks (Qaderi et al. 2017). The flexibility and adaptivity of 
ANNs to use in many areas enable them as the first option for modeling 
many scientific problems. Recently, ANNs, which have been used success
fully toward the solution of various problems, have increased their popu
larity progressively in environmental problems, since they could be 
fruitful tools of the trade to estimate the features or behaviors encoun
tered in environmental problems (Fangfang, Alagumalai, and Mahian 
2021; Guo and Wang 2021; Kassem, Gokcekus, and Maliha 2021; 
Nourani et al. 2020; Shams et al. 2021; Wolski and Kruk 2020). In recent 
years, the performance of ANN models has increased tremendously with 
the development of computer hardware and software technologies and has 
attracted great attention regarding the construction of various prediction 
models. Highly complicated features or complex nonlinear relationships 
regarding a dataset could be enlightened by increasing the depth of 
a neural network and the number of neurons included in the hidden 
layers on a reasonable level and sound basis. Since it is a data-driven 
approach, the ANN technique does not require troublesome mathematical 
computations such as the computation of a Jacobian matrix, numerical 
integration, and so on to handle sophisticated scientific problems. 
Therefore, ANNs have been utilized successfully to deal with a lot of 
problems in a wide variety of disciplines such as biomechanics (Sari and 
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Cetiner 2009), climatology (Shahmansouri et al. 2021), financial and 
economic modeling (Sermpinis et al. 2021), environmental pollution 
(Maleki et al. 2019), medical applications (Zhang et al. 2018), and com
position of music via computers (Abu Doush and Sawalha 2020; Briot 
2021). In this respect, ANNs can be used to make the necessary estimates 
in a variety of research areas, and the flexibility of the number of 
dependent and independent variables is one of the most outstanding 
aspects. In the determination process of the optimization model, ANNs, 
which is inspired by biological neural networks, are taking place in the 
prediction tools and provide accurate responses in various fields such as 
determination of plant element concentration, estimation of water and soil 
pollution, determination of suitable agricultural lands, determination of 
irrigation type and amount.

In soil chemistry, while macro elements such as Ca, K, Mg, N, P, and S are 
allowed to be present in comparatively high concentrations for plant vitality, 
heavy metals are considered as a special element group having toxic effects on 
plants in the case of high concentrations (Karahan et al. 2020; Uchimiya et al. 
2020). Although Cu, Fe, Mn, Mo, and Zn are essential heavy metals for plant 
growth, their excess amount in the soil above a certain concentration may 
cause toxic effects for plants (Jothimani, Arulbalachandran, and Yasmin 2017; 
Turan, Ozdemir, and Demir 2020).

Mount Kaz or Mount Ida is a mountain range located between Canakkale 
and Balikesir provinces and in the north of Edremit Bay. The mountain, called 
Kaz Mountain or Kaz Mountains, extends largely on the Biga Peninsula. Kaz 
Mountains consist of Mount Dede in the west, Mount Kaz in the middle with 
three hills (Babadag in the north, Karatas hill in the middle, Sarikiz hill in the 
south), Mount Eybek in the east, and Mounts Gurgen and Kocakatran in the 
northeast. The deep valleys and canyons located on Mount Ida and extended 
in the north–south direction exhibit a rich potential regarding flora and fauna 
(Efe et al. 2015, 2014; Ozyigit et al. 2015). Especially, the biological diversity 
housed by the vegetation constitutes one of the most remarkable values of the 
national park.

This study mainly aims to discover concentrations of essential heavy metals, 
such as Fe, Mn, and Zn based on Ca, K, and Mg concentrations of soil samples 
obtained from different altitudes in the Mount Ida.

Material and Methods

Study Area, Elemental Analysis, and Data Structure

In this study, soil samples were collected from the Mount Ida national park 
road first at an altitude of 20 m, then at every 100 m up to 1600 m, 1621 m, 
1658 m, and 1678 m along the road to Sarikiz Hill in the national park. Fifteen 
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samples have been collected from each of the mentioned altitudes. These soil 
samples weighing 500 g were taken from the designated locations 20 cm below 
the surface and brought to the laboratory environment in sterile bags. They 
have been dried in an oven at 80°C for 48 hours in glass petri dishes. Then, it 
was made ready for weighing by passing it through a steel sieve with a 2 mm 
pore diameter. Soil samples weighed in the range of 0.200–0.250 g were 
transferred to Teflon vessels then 6 ml 65% HNO3 (Merck), 3 ml 37% HCl 
(Merck) and 2 ml 48% HF (Merck) was added. The digestion process of the 
prepared samples was carried out by using the Berghof-MSW2 brand-model 
microwave device. After the process, the samples were transferred to 50 ml 
sterile falcon tubes using ultra-pure water by filtering with a blue band 
Whatman filter. The total volume was completed to 50 ml (Ozyigit et al. 
2015; Yalcin et al. 2020). The concentrations of Ca, Fe, K, Mg, Mn, and Zn 
elements were determined as mg kg−1 dry weight by the PerkinElmer-Optima 
7000DV inductively coupled plasma optical emission spectroscopy (ICP-OES) 
device.

Neural Network Design and Setup

The ANNs are robust metaheuristic computational tools designed by inspir
ing the activities of neurons. The general structure of ANNs consists of the 
input layer, hidden layer(s), and output layer. The input layer contains 
neurons, so-called covariates, or independent variables, while the output 
variable contains neurons called dependent variables. Although the number 
of hidden layers and the number of artificial neurons therein are not definite 
values, both the number of independent variables and dependent variables is 
predetermined based on the studied problem. As is the case in Figure 1, there 
is no connection between the neurons of the same layer, but usually, the 
neurons of neighboring layers are densely interconnected via synapsis-like 

Figure 1. The standard architecture of the network diagram.
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structures. Thereby, the data collected from the environment is utilized to 
train the neural network to predict the continuous values of the dependent 
variable.

The data collected in a total of 300 samples are divided into three subgroups 
called training data, testing data, and holdout to prevent overfitting and to 
make reasonable predictions (Table 1). The supervised learning starts with 
random weights and determines the weights that will be applied to the current 
task. Back-propagation neural networks are typical supervised learning pro
cedures, employing the back error procedure for learning. The utilized back- 
propagation algorithm to train the neural networks is endowed with gradient 
descent to minimize the error via updating the weights. SPSS 27 has been 
utilized to reach the desired data-driven model. During the computations, the 
method is chosen to be neural networks, the submodule is preferred as the 
multi-layer perceptron (MLP), the number of hidden layers is taken to be 1, 
the number of neurons or units in the hidden layer is taken to be 3, and the 
hyperbolic tangent function and the sigmoid function are utilized as the 
activation function for the hidden layer and the output layer, respectively.

The inner structure of the MLP, as indicated in Table 2, is constructed by 
attributing 4 input variables where Altitude, Ca, Mg, and K are set as inde
pendent variables in each case during the calculations. In addition, the number 
of the output variable adjusted as 1 that is represented individually by Fe, Mn, 
and Zn. The distribution of the training, testing and holdout data are 

Table 1. Case processing summary.
Fe Mn Zn

N Percent N Percent N Percent

Sample Training 214 71.3% 204 68.0% 203 67.7%
Testing 56 18.7% 76 25.3% 68 22.7%
Holdout 30 10.0% 20 6.7% 29 9.7%

Valid 300 100.0% 300 100.0% 300 100.0%
Excluded 0 0 0
Total 300 300 300

Table 2. Network information.
Input Layer Covariates 1 Altitude

2 Ca
3 K
4 Mg

Number of Units a 4
Rescaling Method for Covariates Normalized

Hidden Layer(s) Number of Hidden Layers 1
Number of Units in Hidden Layer a 3
Activation Function Hyperbolic tangent

Output Layer Dependent Variables 1 Fe, Mn, or Zn
Number of Units 1
Rescaling Method for Scale Dependents Normalized
Activation Function Sigmoid
Error Function Sum of Squares

a.Excluding the bias unit
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determined as 70%, 20%, and 10% for each cases Fe, Mn, and Zn. Regarding 
the structure of the MLP, it is important to note that the number of units in the 
input layer is seen to be 4 in Table 2. Both the dependent and independent 
variables are rescaled through a normalization process before the analysis via 
standardization. Different MLPs have been trained and separate analyses have 
been carried out for each dependent variable as it is understood from Figure 
2–3 and the quantitative results in Table 3–5.

The learning rate of the algorithm is set to be 0.4 initially with 
a momentum of 0.9. The squared error function has been utilized during 
the operation of the gradient descent algorithm. The algorithm consumes all 
the data once and continues to use the recorded data until reaching one of 
the stopping criteria such as the maximum number of epochs, 
a predetermined number of consecutive steps with no decrease in error, 
maximum ratio of the relative errors, and so on.

Results and Discussion

When classifications or predictions based on data-driven mathematical 
models are concerned without noticing whether there is causality between 
the dependent and independent variables or not ANNs are powerful tools. 
The current study focuses on the prediction regarding the amount of essen
tial heavy metals like Fe, Mn, or Zn in the soil of Mount Ida by considering 
the altitude in addition to the macro elements like Ca, K, and Mg. Although 
various methods such as artificial neural networks, machine learning, and 
even deep learning have been used in the literature to predict element levels, 
so far, altitude has not been considered in any study (Bagheri, Bazvand, and 
Ehteshami 2017; Bhagat et al. 2021; Hanandeh, Mahdi, and Imtiaz 2021; Lu 
et al. 2019; Shadrin et al. 2020). A supervised learning procedure, ANNs, are 
adopted to achieve this aim. It has been seen that the ANNs can be preferred 
as an important alternative in determining the soil element concentrations as 
a time-saving and low-cost method. The current method could be employed 
to make predictions with higher accuracy as compared to the traditional 
analytical methods, in most cases. The current approach can be regarded as 
a prediction model based on the real-world data, and comparative results 
with statistical methods in the literature are not included in this paper. In 
addition, validation of the present approach has been performed via splitting 
the data into three parts and using one of them for validation. Thereby, the 
required validation has been observed by utilizing the real-world data that is 
not used in the training or testing stages. Besides, to the best knowledge of 
the authors, this study that utilizes the ANNs to forecast the amount of 
essential heavy metals by associating them with the altitude is a pioneering 
work in the literature. In addition, the importance of this ANN approach can 
be better understood when its possible impacts on industrial areas such as 
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smart farming, precision agriculture, and mining are taken into account. 
With this study, it has been shown that the ANN technique is an effective 
alternative method to reach further element analysis results by doing fewer 
experiments in soil element content studies.

The architecture of the neural network consists of four independent 
variables Altitude, Ca, K, Mg in the input layer. The hidden layer compro
mises three neurons as depicted in Figure 1. The output layer contains 
a single unit that represents Fe, Mn, or Zn in separate cases. Input and 
output data are normalized before starting the analysis. Then, the data is 
distributed into three categories for the purpose of training, testing, and 
holdout. These partitions of the data for three different micro elements (Fe, 
Mn, or Zn) can be found in Table 1 in detail. The training part is utilized 
for the supervision of MLP while the testing or validation part is exploited 
to avoid overfitting. The holdout data is spared to control the accuracy of 
the prediction. The hidden layer made use of the hyperbolic tangent 
function while the output layer used the logistic sigmoid function as the 
activation function since the sigmoid functions are widely utilized in pre
diction models concerning mathematical biology and chemistry. The audi
ence can refer to the work of Mustafa et al. (2021) for a specific example. 
The sum of squares error is adopted as the error function, and each of the 
number of consecutive steps without decreasing in the error, the maximum 
training time, the maximum number of epochs, the error change or the 
relative error change in the consecutive steps are introduced as stopping 
criteria.

Firstly, the predicted vs actual Fe values have been plotted in Figure 2(a) 
for the whole dataset, and the results accumulate in an acceptable and 
reasonable neighborhood of the perfect prediction line. The residuals have 
been depicted in Figure 3(a) for the predicted Fe values, and the results are 
shown in the figure again quite plausible when the actual values are con
sidered. The quantitative results in Table 3 show that the relative errors have 
been found to be 4.1%, 4.2%, and 7.1% for the training, testing, and holdout 
data, respectively. Since the actual values are sufficiently higher than zero so 
that the relative errors suffice to take a full grasp regarding the effectiveness 
of the current technique. Moreover, it is important to point out that the 
holdout dataset has not been included in the analysis during the training and 
testing stages. Besides, the sum of squares error is computed as 1.070 for the 
training set and 0.0131 for the testing set that seems to be considerably small 
values. Also, the RMSEs have been computed to be .071 and .075, respec
tively, for the training and testing data. Another important finding is the 
importance of the altitude among the independent variables. The conclusion 
that Altitude seems to be the most important independent variable among all 
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Figure 2. Predicted vs actual Fe (a), Mn (b), Zn (c) amounts in mg kg−1.
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Figure 3. Residual values in the prediction of Fe (a), Mn (b), Zn (c) amounts in mg kg−1.
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independent variables can be inferred from Table 4. Also, the parameter 
estimation demonstrated in Table 5 provides a sound base regarding this 
inference and is utterly persuasive.

Secondly, the predicted vs the actual Mn values and the residuals are 
illustrated in Figures 2(b) and 3(b), respectively. The results in Figure 2(b) 
exhibit an almost perfect match while the residual values seem fully acceptable 
in a harmony with the predicted vs actual values. According to the findings in 
Table 3, the relative errors has been computed as 1.0%, 1.0%, 1.5% for the 
training, testing, and holdout data, respectively. The sum of squares errors is 
found to be 0.081 and 0.032 for the training and testing data, respectively. In 
addition, the RMSEs were computed to be .012 and .021, respectively, for the 
training and testing data. As reported by the results concerning the parameter 
estimation in Tables 4 and 5, Ca and K are the foremost important indepen
dent variables in the prediction of Mn.

Finally, the predicted vs true Zn values are plotted in Figure 2(c), and the 
residual plot is supplied in Figure 3(c). The power of the ANN-based predic
tion method could be observed in the former one since the actual vs the 
predicted values concentrate in a tiny subset of the confidence region. 
Furthermore, the corresponding relative errors are found to be 2.0%, 2.2%, 
and 3.4%, respectively, for the training, testing, and holdout data while the 
sum of squares errors is computed to be 0.155 and 0.063 for the training and 
testing datasets. Moreover, the RMSEs have been computed to be .028 and .030 

Table 3. Model summary.
Fe Mn Zn

Training Sum of Squares Error 1.070 .081 .155
RMSE .071 .012 .028
Relative Error .041 .010 .020
Stopping Rule Used Relative change in 

training error 
criterion 

(.000001) achieved

Maximum number of 
epochs (1000) 

exceeded

Maximum number of 
epochs (1000) 

exceeded

Training Time 0:00:01.16 0:00:00.10 0:00:00.09
Testing Sum of Squares Error .311 .032 .063

RMSE .075 .021 .030
Relative Error .042 .010 .022

Holdout Relative Error .071 .015 .034
Dependent Variable: Fe, Mn, or Zn

Table 4. Independent variable importance.
Fe Mn Zn

Importance Normalized 
Importance

Importance Normalized 
Importance

Importance Normalized 
Importance

Altitude .328 100.0% .205 58.2% .322 99.2%
Ca .302 92.0% .352 100.0% .187 57.6%
K .115 35.2% .335 95.3% .325 100.0%
Mg .255 77.8% .109 30.9% .166 51.1%
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for the training and testing data, respectively. According to the results of 
variable importance analysis, the importance of the independent variables 
K and Altitude seem the highest ones among the independent variable impor
tance’s via the parameter estimations in Tables 4 and 5.

Indeed, although the produced results are quite satisfactory, the relative 
errors could be declined up to one-fifth of the received results. Particularly, the 
derived results in Table 6 have been deduced by setting Altitude as a factor 

Table 5. Parameter estimates for Fe, Mn, and Zn.
Predicted

Hidden Layer Output Layer

Predictor H(1:1) H(1:2) H(1:3) Fe
Input Layer (Bias) .511 .941 −1.155

Altitude 1.869 −2.007 3.285
Ca .237 1.963 −1.877
K .022 −.379 .648
Mg −4.267 −4.313 −1.667

Hidden Layer (Bias) 2.115
H(1:1) −3.261
H(1:2) 2.828
H(1:3) 3.614

Predictor H(1:1) H(1:2) H(1:3) Mn
Input Layer (Bias) .865 2.182 −4.448

Altitude 1.841 −2.984 1.062
Ca −2.381 .781 5.578
K −.091 .927 2.816
Mg .518 −.908 −1.298

Hidden Layer (Bias) −2.041
H(1:1) 3.007
H(1:2) 1.903
H(1:3) 2.730

Predictor H(1:1) H(1:2) H(1:3) Zn
Input Layer (Bias) 1.985 −.794 1.828

Altitude −2.766 1.357 −5.497
Ca −1.077 −4.024 1.237
K 2.094 .920 .444
Mg −.639 .845 .123

Hidden Layer (Bias) −2.266
H(1:1) 4.165
H(1:2) −1.630
H(1:3) −2.858

Table 6. Model summary for the case that altitude is a factor variable.
Fe Mn Zn

Training Sum of Squares Error .118 .026 .022
Relative Error .018 .005 .004

Stopping Rule Used Maximum number 
of epochs (100) 

exceeded

Maximum number 
of epochs (100) 

exceeded

10 consecutive 
step(s) with no 

decrease in 
errora

Training Time 0:00:00.03 0:00:00.02 0:00:00.01
Testing Sum of Squares Error .031 .021 .015

Relative Error .031 .006 .005
Holdout Relative Error .022 .003 .005
Dependent Variable: Fe, Mn, or Zn
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variable instead of an independent variable, even for modest stopping criteria. 
At its core, the attribution of Altitude as a factor variable at the beginning of 
the training leads to a higher numerical accuracy since each separate value of 
Altitude is involved in the training process as a separate independent variable 
in that case.

Conclusions

In this paper, efficient neural network models with an innovative perspective 
of ecological importance have been produced to determine the heavy metal 
(Fe, Mn, and Zn) level in soil by using local factors (altitude, Ca, K, and Mg). 
It is believed that the derived network models will assist in finding heavy 
metal levels in soil, assessing economic and environmental impacts in var
ious local conditions, and making accurate decisions in improving desired 
environmental policies. In this context, heavy metal levels have been inves
tigated based on the soil information obtained from the Mount Ida. Unlike 
conventional approaches, the ANN has then succeeded in investigating 
heavy metal levels, depending on the real data, in the soil through altitude 
and various soil parameters for the first time. This article has provided very 
informative and guiding results from the latest research through the derived 
neural network models for the ecosystem of interest, based on the relation 
between the altitude and the examined element levels for the first time in the 
literature. The simulation results can be viewed as an important indication of 
the superiority of the network algorithm over other conventional 
approaches. It has been concluded that these findings will be very beneficial 
in terms of environmental and all aspects in organizing suitable research 
plans for scientists in this field. There is no doubt that in modeling the 
behavior of such a wide variety of realistic problems involving a wide range 
of sciences, optimal assessment of heavy metal status for living things and 
therefore for agricultural economies and even political decisions in daily life 
is vital. The results obtained appear to be original and optimal and therefore 
it is a requirement for the interested readers to be more careful in modeling 
such problems. Although this study has been carried out to determine the 
heavy metal level in the Mount Ida, the fact that the same study can be 
realized very comfortably for any ecosystem is believed to have increased the 
importance of this study even higher. For further research, such studies can 
be done for plant element status in a more involving way, similar to the 
element status determined here in the soil.
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