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ABSTRACT
Land Cover or Land Use (LCLU) classification is an important, 
challenging problem in remote sensing (RS) images. RS image 
classification is a recent technology used to extract hidden 
information from remotely sensed images in the observed 
earth environment. This classification is essential for sustainable 
development in agricultural decisions and urban planning using 
deep learning (DL) methods. DL gets more attention for accu
racy and performance improvements in large datasets. This 
paper is aimed to apply one of the DL methods called transfer 
learning (TL). TL is the recent research problem in machine 
learning and DL approaches for image classification. DL con
sumes much time for training when starting from scratch. This 
problem could be overcome in the TL modeling technique, 
which uses pre-trained models to build deep TL models effi
ciently. We applied the TL model using bottleneck feature 
extraction from the pre-trained models: InceptionV3, 
Resnet50V2, and VGG19 to LCLU classification in the UC 
Merced dataset. With these experiments, the TL model has 
been built the outdate performance of 92.46, 94.38, and 99.64 
in Resnet50V2, InceptionV3, and VGG19, respectively.
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Introduction

Land cover is variable and dynamic on the earth’s surface (Abdu 2019), 
whereas land use is the intervention of human activities on the earth. Land 
cover is the earth’s surface covered by physical features like forest, river, 
vegetation, or others. In contrast, land use is the ability of a human to use 
natural resources for various purposes (Cao, Dragićević, and Li 2019). Thus, 
land cover and land use (LCLU) describe the earth’s features and human 
interaction. Classification is needed in the land cover mapping (Fang et al. 
2019; Stivaktakis, Tsagkatakis, and Tsakalides 2019; Tong et al. 2020) and land 
use resource management (Cao, Dragićević, and Songnian 2019; Castelluccio 
et al. 2015; Hung, Wu, and Tseng 2020). LCLU classification is an important, 
challenging task (Huang et al. 2021), and it contributes to agricultural 

CONTACT Abebaw Alem abebale@dtu.edu.et Department of Computer Science and Engineering, Delhi 
Technological University, Delhi, India

APPLIED ARTIFICIAL INTELLIGENCE                    
2022, VOL. 36, NO. 1, e2014192 (1322 pages) 
https://doi.org/10.1080/08839514.2021.2014192

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited.

http://orcid.org/0000-0001-8154-4648
http://orcid.org/0000-0003-4244-2299
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2014192&domain=pdf&date_stamp=2022-06-06


decision-making and urban forecasting on the earth observation environment 
for sustainable development. This classification problem will be solved using 
transfer learning (TL) models in remote sensing (RS) images.

RS images are earth observation geospatial data and records of environ
mental information. RS data face the “big data” challenges and some new 
challenges for DL as they raise exceptional problems to new scientific ques
tions (X. X. Zhu et al. 2017). RS imagery data classification is a significant 
problem in various domains (X. Liu et al. 2019; Deng et al. 2019; Abdu 2019; 
Yao et al. 2019; Cheng et al. 2020; W. Zhang, Tang, and Zhao 2019; Shabbir 
et al. 2021; D. Zhang, Liu, and Shi 2020; Alam et al. 2021). Thus, our 
consideration of classification was one of the major research problems in RS 
imagery data. Nowadays, researchers explored the application of DL to con
frontation these challenges.

Deep learning (DL) gets more attention for the LCLU classification problem 
in RS images (Vali, Comai, and Matteucci 2020). The DL approaches could 
extract the earth’s features from remotely sensed imagery data to manage the 
earth’s environment by properly utilizing deep classification systems. DL 
algorithms are calling focuses on their automatic learning ability from large 
datasets (Côté-Allard et al. 2019; X. Liu et al. 2019; Li et al. 2019; Deng et al. 
2019; Das et al. 2019; Xie et al. 2016; Bahri et al. 2020; X. Pan et al. 2018; 
W. Zhao et al. 2015; X. X. Zhu et al. 2017; Yao et al. 2019; Rashid et al. 2020; 
Weinstein et al. 2019; Cheng et al. 2020).

In recent studies, the DL methods, especially CNNs, are widely used in RS 
image classification for their outstanding performance and accuracy 
(Marmanis et al. 2016; Das et al. 2019; W. Zhang, Tang, and Zhao 2019; 
Vali, Comai, and Matteucci 2020; Rashid et al. 2020). However, DL algorithms 
could take more time and complexity, creating over-fitting (Das et al. 2019; 
B. Zhao, Huang, and Zhong 2017; Rostami et al. 2019; Hung, Hui-ching, and 
Tseng 2020; Zou and Zhong 2018) when training the DL models from scratch. 
TL, the innovative DL model in machine learning, could overtake this problem 
because TL is an optimization technique used to thrift the processing time, 
superior performance, or accuracy (Kumar, Naman, and Verma 2021).

Thus, TL could apply formerly learned techniques to resolve new problems 
efficiently (Chen, Zhang, and Ouyang 2018). Nowadays, TL has gotten 
increasing attention lately for reducing training time for large datasets (Das 
et al. 2019; Weiss, Khoshgoftaar, and Wang 2016; Scott et al. 2017; Lima and 
Marfurt Lima and Marfurt, 2020; Y. Zhu et al. 2011; X. Zhang, Guo, and Zhang 
2020).

The TL models could be applied in various RS domains. For instance, it has 
been applied for forest variable estimation (Astola et al. 2021); for object 
(airplane) detection (Chen, Zhang, and Ouyang 2018; M. Zhu et al. 2019); 
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for poverty mapping (Xie et al. 2016); for labeling the Synthetic Aperture 
Radar (SAR) (Rostami et al. 2019); for change analysis (Qian et al. 2020); and 
marsh vegetation classification (M. Liu et al. 2021).

Related work has been tried to investigate CNN-based TL model on the 
domain area. Few researchers (Mahdianpari et al. 2018; B. Zhao, Huang, and 
Zhong 2017; S. J. Pan and Yang 2010; Marmanis et al. 2016; Zou and Zhong 
2018; X. Zhang, Guo, and Zhang 2020; Lima and Marfurt 2020; Shabbir et al. 
2021) have investigated CNN-based models using pre-trained architectures on 
RS image classification. Using TL, the LCLU classification problem was inves
tigated by (Naushad and Kaur 2021; D. Zhang, Liu, and Shi 2020) using TL. 
However, TL in RS has not been widely explored yet (Astola et al. 2021), 
especially in the LCLU classification. Thus, we applied deep neural network- 
based TL (Li et al. 2019) in LCLU classification using RS image.

Our motivation was to apply the deep TL model with pre-trained models 
for the LCLU classification in RS images and improve the performance 
efficiently. We have listed the related papers with their recommendations in 
our previous work (Alem and Kumar 2020). Therefore, we also were moti
vated to investigate the recommended pre-trained networks suggested by 
(Marmanis et al. 2016; Stivaktakis, Tsagkatakis, and Tsakalides 2019).

Our objective in this paper was to apply the deep TL models and improve 
their performance efficiently for LCLU classification in RS images. To achieve 
this objective, we followed the procedures: preprocessed the UCM imagery 
data, extracted the image features using the bottleneck feature extraction 
technique, and modeled the TL with four sequential layers (flatten, dense, 
two activations (ReLu and softmax) and dropout layers), and evaluated using 
a confusion matrix.

Our contributions in this paper were:

● Applying deep TL method on RS imagery data for LCLU classification 
problem;

● performed LCLU classification problem in RS using three TL architec
tures (ResNet50V2, VGG19, and InceptionV3) with a bottleneck feature 
extraction technique on the UCM dataset,

● evaluated and improved the performance of the TL models efficiently

Methods

This study proposed the Deep TL method, which is a deep CNN technique, for 
efficient time-consuming. Building the model for better performance uses 
various parameters, such as pre-trained models, learning rate, early stopping, 
dropout, optimizer, loss, and activation functions.
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Pre-trained models have become recent applications in RS image classifica
tion problems (Risojevic and Stojnic 2021; Rashid et al. 2020; D. Zhang, Liu, 
and Shi 2020; Marmanis et al. 2016; Stivaktakis, Tsagkatakis, and Tsakalides 
2019). The pre-trained CNN based (Kumar, Naman, and Verma 2021) TL 
models used in this paper included ResNet50V2 (He et al. 2016; Shabbir et al. 
2021), VGG19 (Mateen et al. 2019; Simonyan and Zisserman 2015; Xiao et al. 
2020), and InceptionV3 (Szegedy et al. 2015a, 2015b). These pre-trained 
architectures are the deep CNN pre-trained models used to design a new TL 
model from the existing problem.

Learning rate (LR) was used to facilitate the TL model learning from the 
UCM dataset. It has various values such as 0.01, 0.001, and 0.0001. However, if 
the larger TR is used, the fluctuation of training and learning could happen 
(Naushad and Kaur 2021). Therefore, the smaller TR value is advisable to be 
used in building DL models. So, we used the TR of 0.0001 in this paper to 
optimize our model.

Reducing over-fitting in the DL method is dynamic. Dropout and early 
stopping are the major parameters used for reducing overfitting when training 
data. The percentage values for dropout expressed in decimal forms are usually 
recommended to use 0.2, 0.3, 0.4, and 0.5. We used 0.5 (i.e.50%) to reduce the 
training over-fitting since higher dropout could perform better than lower 
values (Stivaktakis, Tsagkatakis, and Tsakalides 2019). Early stopping is a deep 
CNN regularization technique used to stop the training after random epochs 
when the model performance could not improve (Naushad and Kaur 2021).

In DL modeling techniques, classification loss functions are widely used. 
This classification loss could be binary cross-entropy or multi-class cross- 
entropy. We preferred the multi-class entropy loss function since our class is 
multi-classes of the RS images.

Activation functions could be used afterward for each convolutional layer to 
raise the neural network capability (Yao et al. 2019). ReLu (Nair and Hinton 
2010) and softmax (Mahdianpari et al. 2018) activation functions were applied 
in this paper because they are more advantageous than other conventional 
nonlinear functions, such as tanh and sigmoid functions. ReLu and softmax 
are better in their easily propagating errors; multiple layers of the neurons 
have been activated and simpler mathematical operation than that of tanh and 
sigmoid functions.

ReLu generates an output x if x > 0 or 0 if x < 0 as observed in (equation 1 
and Figure 1a). This output implies that the neurons with the negative values 
are not activated except those with positive values. The slope of the gradient 
(derivative) value of ReLu is constant, i.e., ether 1 ∀x, x ≥ 0 or 0 ∀x, x < 0 
(equation 2 and Figure 2b) . 
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f xð Þ ¼ max 0; xð Þ ¼
xi; ifx > 0
0; ifx< 0

�

(1) 

f 0 xð Þ ¼ 1; ifx � 0
0; ifx< 0

�

(2) 

Softmax (softargmax) is used to predict the class having the highest probability 
in multi-class classification problems for the input labels. We also used this 
function since our RS imagery data is a multi-class classification problem. The 
softmax output is between 0 and 1, and the sum of each class probability is 1.0. 
If some N elements of the input vector are N <0 or N > 1, they would be 
between (0, 1) after using the softmax function. Its equation f zi;j

� �
over 

N classes is computed in the equation (3) given. 

s ¼ f zi;j
� �

¼
exp z ið Þ

PN
j¼1 exp zj

� � ¼
ezi

PN
j¼1 ezj

(3) 

In summary of the method, the parameters such as networks and weights were 
trained in the pre-trained InceptionV3, Resnet50V2, and VGG19 models. We 
used the bottleneck feature extraction method to extract image features from these 

Figure1. ReLu function graphical representation. a) Forward propagation b) gradient descent 
propagation (derivative).

Figure2. Sample input images feeding into pre-processing.
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pre-trained models. A fully connected network for pre-trained models was 
removed, and then a new model was built, and its weights were also removed. 
The bottleneck features, become the inputs for FC, are trained for UCM images 
(Figure 2). The bottleneck feature extracted the features of shape (1264, 6, 6, 2048) 
in training bottleneck prediction and shape of the features (420, 6, 6, 2048) on 
validation and testing bottleneck predictions extracted for each pre-trained model.

Experiments and Performance Evaluations

The experiments were performed on a laptop with the Intel Core i3-4000 M 
CPU 2.40 GHz 2.40 GHz RAM = 4GB and in Colaboratory with its GPU in 
Keras and Tensorflow software packages.

Experimental Datasets Setting

The University of California Merced (UCM) data set is used to solve the 
problem of LCLU classification. The UCM Land Use data set was manually 
collected and introduced by (Yang and Newsam 2010) from the USGS 
National Map Urban Area Imagery. This dataset consists of 21 land use and 
land cover classes containing 100 images each, measuring 256 × 256 pixels 
with a spatial resolution of about 30 cm/pixel. The dataset was divided into 
60:20:20 ratio for training samples, validation samples, and tasting samples for 
each class, respectively (Table 1).

Table 1. Parameter setting for UCM dataset.
Classes Training Samples Validation Samples Test Samples Total

Agricultural 60 20 20 100
Airplane 60 20 20 100
Baseball diamond 60 20 20 100
Beach 60 20 20 100
Buildings 60 20 20 100
Chaparral 60 20 20 100
Dense residential 60 20 20 100
Forest 60 20 20 100
Freeway 60 20 20 100
Golf course 60 20 20 100
Harbor 60 20 20 100
Intersection 60 20 20 100
Medium residential 60 20 20 100
Mobile home park 60 20 20 100
Overpass 60 20 20 100
Parking lot 60 20 20 100
River 60 20 20 100
Runway 60 20 20 100
Sparse residential 60 20 20 100
Storage tanks 60 20 20 100
Tennis court 60 20 20 100
Total 1260 420 420 21,000
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Experimental Setting

As we discussed in section 2 earlier, various hyperparameters do have 
important inspirations for classification problems. So, we have used some 
of the important parameters in our experiment listed in Table 2. In addition 
to using the dropout (0.5) layer, we used the early stopping technique to 
reduce the over-fitting. 

Performance Evaluation Measurements

The model’s performance is evaluated using a confusion matrix (CM) and 
overall accuracy (OA). CM analyzes errors and confusion between the column 
with the occurrences in a predicted class and the row with the occurrences in 
an actual class (W. Zhang, Tang, and Zhao 2019). So, CM could also be named 
as an error matrix since it classifies the error classification.

The errors could be type I error and type II error (Table 3). A type I error is 
an outcome where the model incorrectly predicts the positive class when it is 
the actual negative value. In contrast, a type II error is an outcome where the 
model incorrectly predicts the negative class when it is the actual positive 
value. We combined the training and validation trained data after validating 
the model during the process and then evaluating the model’s performance 
with 20% of testing data. CM measures the performance of the TL model, 
whether it is classified correctly or incorrectly.

We used the classification metrics to calculate the model’s performance: 
accuracy, recall, precision, and F1 measures.

Accuracy is the measure of predictions that the model classified correctly. 

Accuracy ¼
#of correct predictions

Tot:# of predictions
¼

TPþ TN
TPþ TNþ FPþ FN

(4) 

Table 2. Hyperparameters setting for training data.
Hyperparameter Parameter values used

Optimizer Adam
Activation functions ReLu and Softmax
Loss function categorical cross entropy
Batch-size 64
Epochs 100
Learning rate 0.0001

Table 3. Confusion matrix in summarized view.
Actual Values

Positive Negative

Predictive Values Positive True Positive(TP) False Positive(FP)/ 
Type I Error

Positive Prediction  
for Precision

Negative False Negative(FN)/ 
Type II Error

True Negative(TN) NegativePrediction
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Precision computes a positive predictive value, i.e., a quantity of the relevant 
classes among the retrieved classes. It evaluates what amount of positive 
identifications was actually correct. 

Precision ¼
#Positive Predictions

Tot:#ofPositive Predicts
¼

TP
TPþ FP

(5) 

A recall is used to identify all actual correct relevant classes retrieved from the 
dataset. 

Recall ¼
#Correct Actual Positives
Tot:# of Actual Positives

¼
TP

TPþ FN
(6) 

F1 score is the harmonic mean of precision and recall. Its score becomes 1 
when both precision and recall are perfect and becomes 0 when either preci
sion or recall result becomes 0. F1 score measures the preciseness and robust
ness of the classification model. 

F1Score ¼
2 Precision � Recallð Þ

Precisionþ Recall
¼

2 TP
TPþFP

� �
� TP

TPþFN

� �� �

TP
TPþFP

� �
þ TP

TPþFN

� �

¼
2TP

2TPþ FPþ FN
(7) 

TL Models Evaluation Using Measurements

There are N (N = 21) classes with an integer labeled 0 to N-1. The generated 
records were transformed into a confusion matrix (Figure 3). The three TL 
models generated the class label records for 21 classes ranging from 0 to 20 
while testing each class with 20 samples. For instance, in the Inception_v3 
model in Figure 3a, the first-class labeled with 0, among 20 testing samples, 18 
classes are correctly classified, but the other two classes, i.e., the actual classes 3 
and 18, are predicted as class 1. 

Figure 3. Confusion matrix of each model on UC merced dataset. a) Inception_v3 model b) 
Resnet50v2 model c) VGG19 model.
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Based on the confusion matrix (Figure 3a) records, the performance of TL 
with the Inception_v3 model has been calculated and recorded in Table 4. 
Similarly, the performance of TL with the resnet50v2 and VGG19 models 
have been measured in Tables 5 and 6 based on the confusion matrix 
(Figure 3b and 3c), respectively.

The accuracies of the three TL models for training and validation data are 
shown in Figure 4 , and the overall accuracies are recorded in (Table 7). The 
accuracy of F1-Score is the preciseness and robustness of the classification 
model since it computes the harmonic mean of precision and recall.

Table 4. Inception_v3 model for class performances in precision, recall and F1-score.
Class Name Class Label Precision Recall F1-score Support

Agricultural 0 1.00 0.90 0.95 20
Airplane 1 1.00 1.00 1.00 20
Baseball diamond 2 0.86 0.90 0.88 20
Beach 3 0.95 0.95 0.95 20
Buildings 4 0.72 0.90 0.80 20
Chaparral 5 1.00 1.00 1.00 20
Dense residential 6 0.71 0.50 0.59 20
Forest 7 0.86 0.95 0.90 20
Freeway 8 1.00 0.95 0.97 20
Golf course 9 0.75 0.45 0.56 20
Harbor 10 0.95 1.00 0.98 20
Intersection 11 0.95 0.90 0.92 20
Medium residential 12 0.64 0.80 0.71 20
Mobile home park 13 0.78 0.70 0.74 20
Overpass 14 1.00 0.95 0.97 20
Parking lot 15 1.00 1.00 1.00 20
River 16 0.70 0.95 0.81 20
Runway 17 0.87 1.00 0.93 20
Sparse residential 18 0.85 0.85 0.85 20
Storage tanks 19 1.00 0.95 0.97 20
Tennis court 20 0.83 0.75 0.79 20
Average Accuracy in each Mesures 0.88 0.87 0.87 420

Figure4. Accuracies in Training vs. Validation for TL classification models. a) Accuracy of 
resnet50V2 b) Accuracy of inceptionV3 c) Accuracy in VGG19.
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The categorical-cross-entropy loss function was used while compiling the 
model. For the correct class, the value of the loss function becomes closer to 0 
(Figure 5). 

Discussions

Discussions on Results, Methods, and TL Performances

The experiments resulted in section 3 prove that the pre-trained models are 
applicable in LCLU classification in RS images. The accuracy is also our aim, 
and we got better results in each model and most individual classes. We 
evaluated each class’s accuracies using precision, recall, and F1-score measure
ments for each model. Precision is outperformed, i.e., 88%, 88%, and 90% for 
all the three models (Tables 4, 5 and 6). That means the relevant classes were 
retrieved and predicted correctly. If F1-score is perfect (1), i.e., 100% accurate 
for certain classes, precision, and recall are also perfect for all classes.

As seen in Tables 4 and 8 for the Inception_v3 model, the classes such as 
agricultural, airplane, chaparral, freeway, overpass, and parking were best- 
performed precision. In contrast, medium residential was performed the 
poorest result, i.e., 64% precision result. Airplane, chaparral, harbor, parking 
lot, and runway classes were best-performed recall while golf course and dense 
residential were performed the worst results, i.e., 45% and 50% recall result, 
respectively. Moreover, the classes such as airplane, chaparral, and parking lot 
are best accurate in f1-score while dense golf course (56%) and residential 
(59%) are the poorest. For similar situations, we grouped classes in their best 
or worst/poorest value under each Resenet50v2 and VGG19 model measure
ment in Table 8.

Figure 5. Losses in Training vs. Validation for TL classification models. a) Loss in resnet50V2 b) Loss 
in inceptionV3 c) Loss in VGG19.
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Table 5. Resnet50v2 model for class performances in precision, recall, and F1-score.
Class Name Class Label Precision Recall F1-score Support

Agricultural 0 1.00 1.00 1.00 20
Airplane 1 1.00 1.00 1.00 20
Baseball diamond 2 1.00 0.95 0.97 20
Beach 3 0.83 0.95 0.88 20
Buildings 4 0.75 0.75 0.75 20
Chaparral 5 1.00 1.00 1.00 20
Dense residential 6 0.56 0.70 0.62 20
Forest 7 0.86 0.90 0.88 20
Freeway 8 0.83 1.00 0.91 20
Golf course 9 0.85 0.55 0.67 20
Harbor 10 1.00 1.00 1.00 20
Intersection 11 0.84 0.80 0.82 20
Medium residential 12 0.65 0.85 0.74 20
Mobile home park 13 0.71 0.60 0.65 20
Overpass 14 1.00 0.80 0.89 20
Parking lot 15 1.00 0.95 0.97 20
River 16 0.71 0.85 0.77 20
Runway 17 1.00 1.00 1.00 20
Sparse residential 18 0.81 0.85 0.83 20
Storage tanks 19 1.00 0.90 0.95 20
Tennis court 20 1.00 0.75 0.86 20
Average Accuracy in each Mesures 0.88 0.86 0.86 420

Table 6. VGG19 model for class performances in precision, recall, and F1-score.
Class Name Class label Precision Recall F1-score Support

Agricultural 0 1.00 1.00 1.00 20
Airplane 1 1.00 0.90 0.95 20
Baseball diamond 2 1.00 0.85 0.92 20
Beach 3 0.95 0.95 0.95 20
Buildings 4 0.94 0.85 0.89 20
Chaparral 5 1.00 1.00 1.00 20
Dense residential 6 0.52 0.85 0.64 20
Forest 7 0.86 0.90 0.88 20
Freeway 8 1.00 0.90 0.95 20
Golf course 9 0.83 0.50 0.62 20
Harbor 10 1.00 1.00 1.00 20
Intersection 11 0.82 0.90 0.86 20
Medium residential 12 0.85 0.85 0.85 20
Mobile home park 13 0.82 0.45 0.58 20
Overpass 14 0.85 0.85 0.85 20
Parking lot 15 1.00 1.00 1.00 20
River 16 0.61 0.95 0.75 20
Runway 17 0.87 1.00 0.93 20
Sparse residential 18 1.00 0.95 0.97 20
Storage tanks 19 1.00 1.00 1.00 20
Tennis court 20 1.00 0.85 0.92 20
Average Accuracy in each Mesures 0.90 0.88 0.88 420

Table 7. Number of early stopping at epoch #, time is taken for training and overall accuracy in the 
three models.

Architecture #of layers #of layers Early stopping at epoch# Time (s) OA

Resnet50V2 152 3*3 19 6 92.46
InceptionV3 22 5*5 18 9 94.36
VGG19 16 3*3 95 5 99.64
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The poorest precision results in the medium residential and dense residen
tial classes and the poorest recall result in the golf course are observed in all 
three models. The results of the poorest accuracy could be the cause of the 
image variant similarity and resolution differences.

By applying the hyperparameters listed in Table 2, the TL model has been 
modeled using the Adam optimizer with TR of 0.0001 and compiled with the 
loss function of categorical-cross-entropy. The loss function predicts an inte
ger value for each class N assigned from 0 to N-1, where N =21 classes in the 
UCM dataset. The cross-entropy loss has become lower and lower for the 
deeper network training process to identify the correct class. A correct cross- 
entropy value is 0 for a correct class. The value of the cross-entropy loss 
function increases for misclassified classes, and the trained network fails to 
find the correct class (Bahri et al. 2020). In Figure 5, the training loss graph 
with blue color is closer to 0. So, the trained network is good for predicting the 
correct class in TL.

In addition to dropout, we used the early stopping technique to reduce 
overfitting and improve performance. The training was stopped early either 
the performance of the validation loss stopped decreasing even though the 
performance of the training loss decreased, or the performance of the valida
tion accuracy stopped increasing although the performance of the training 
accuracy increased. We assigned the epoch value 100, and the early stopping 
stopped at epoch 19, 18, and 95 randomly when validation loss stopped 
decreasing for Resnet50v2, InceptionV3, and VGG19, respectively. Mostly 
we observed that the larger early stopping resulted, the larger the accuracy, 
for instance, VGG19 in this study.

Therefore, VGG19 has superior TL model performance. As seen from 
Table 7, the VGG19 model achieved the superior accuracy of 99.64% for 
a 70% training ratio among all methods.

Discussions on Similar Studies

In this paper, we utilize the Resnet50V2, Inception-V3, and VGG-19 as our 
baselines. We compared the classification performance accuracy of this paper 
with the UCM dataset’s state-of-the-art classification studies (Table 9). 
According to Table 9, all the proposed TL models achieved superior accuracy 
among the state-of-the-arts. We used the Adaptive optimizer with the smallest 
LR value, i.e., 0.0001 while the others used stochastic gradient descent (SGD) 
with various parameters. Most of the researchers listed in Table 9 have used 
the epoch number 50, but we have used 100 epochs and early stopping while 
validating the model.
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Therefore, the proposed VGG19 achieved the superior accuracy of 99.64% 
for a 70% training ratio among all methods we used. The Resnet50v2 model 
results in lower performance than the other two methods. The results in the 
three pre-trained models demonstrate that the TL model can prove its avail
ability on RS images.

Conclusions

In this paper, we addressed the problem of LCLU classification in RS images 
using deep TL models with the bottleneck feature extraction. Our objective 
was to apply the TL model and improve the classification performance for 
LCLU classification in RS images. The training time of TL is more efficient 
(trained in seconds) than the other deep CNN models (trained in days when 
they trained from scratch), as observed in the state-of-the-arts study by 
(Mahdianpari et al. 2018; Rashid et al. 2020). We used the bottleneck feature 
extraction method from pre-trained models to improve the model’s training 
speed and accuracy.

The model’s performance is also prominent in all models, i.e., 92.46%, 
94.36%, 99.64% accuracy results for Resnet50V2, Inception-V3, and VGG- 
19, respectively. However, the superior accuracy is profound in the VGG19 
model with efficient time. Most of the classes’ performance is prominent 
accuracies except for some classes such as the medium residential, dense 
residential classes, and golf course, which have the poorest accuracies when 
evaluated by precision, recall, and F1-score.

LCLU classification in RS image contributes significant values (Alshari and 
Gawali 2021; Lima and Marfurt Lima and Marfurt, 2020) to decision-making 
and planning in rural and urban areas. Our contribution is applying the deep 
TL using bottleneck feature extraction for the LCLU classification problem 
using RS image. This contribution directs environmental resource manage
ment and sustainable development for agricultural and urban planning. In 
addition to this contribution, we evaluated and improved the performance of 
the TL models and proved their availability on the LCLU classification in RS 
images.

For further investigation, we will use more recent deep neural networks 
with various pre-trained architectures as our baseline to substantiate the 
effectiveness of TL pre-trained models on various datasets and parameters.
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