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Abstract
X-ray computed tomography (CT) is frequently used for non-destructive testing with many
applications in a wide range of scientific research areas. The difference in imaging speeds
between synchrotron and lab-based scanning has reduced as the capabilities of commercially
available CT systems have improved, but there is still a need for faster lab-based CT both in
industry and academia. In industry high-speed CT is desirable for inline high-throughput CT at
a higher resolution than currently possible which would save both time and money. In academia
it would allow for the imaging of faster phenomena, particularly dynamic in-situ testing, in a
lab-based setting that is more accessible than synchrotron facilities. This review will specifically
highlight what steps can be taken by general users to optimise scan speed with current
equipment and the challenges to still overcome. A critical evaluation of acquisition parameters
across recent high-speed studies by commercial machine users is presented, indicating some
areas that could benefit from the methodology described. The greatest impacts can be achieved
by maximising spot size without notably increasing unsharpness, and using a lower number of
projections than suggested by the Nyquist criterion where the anecdotal evidence presented
suggests usable results are still achievable.

Supplementary material for this article is available online

Keywords: x-ray microscopy, computed tomography, high-speed XCT, micro CT, in-situ,
dynamic CT

(Some figures may appear in colour only in the online journal)

1. Introduction

Originally a medical diagnostic tool, x-ray computed tomo-
graphy (CT) has become common in non-destructive testing
(NDT) in the last few decades. The imaging process allows
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internal inspection of complex objects without dismantling or
damaging them, leading to prominence in a number of diverse
applications from materials science and industry to forensics
and museums. For example, in forensics it has been revolu-
tionary in tool mark analysis by scanning a piece of bone
to identify how the injury was sustained [1–3]. This type of
analysis has even been presented as part of a live court case
[4]. The geosciences have many applications from the study
of porosity in rocks and grain analysis, to fluid flows therein
[5–10]. Aside from gaining more information on an object it
also allows for the digital preservation of specimens in nat-
ural history collections that can degrade over time [11–15].
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Materials scientists are particularly interested in the response
to loading, and use CT to study anything from damage and
crack characterisation to fibre analysis in polymer compos-
ites [16–20]. Within life sciences traditional 2D microscopy
has now significantly evolved thanks to CT imaging [21].
CT is not only a tool for academic research but it is also
essential for industrial innovation particularly within man-
ufacturing. Additive manufacturing (AM) is praised for its
ability to directly print complex geometries of which CT is
the only way to evaluate against the desired specifications as
it provides internal visibility in any direction without con-
sequence [22–24]. This is in contrast to other NDT meth-
ods such as optical inspection which provides purely external
information, or ultrasonic testing that is less versatile in terms
of the objects and requires preparation of the surface of the
object. Measuring internal and external features to inspect
dimensions and geometries of objects is critical in design for
function [25], with research continuing to optimise repeatab-
ility and reproducibility as a metrological system [26, 27].

Although it is now possible to achieve scan acquisition
times to the order of (tens of) minutes in lab-based facilities
dependent on the sample, faster acquisition is still desired. The
EPSRCTomographyRoadmap (2018) confirms this as it states
that ‘39% of respondents indicated that speed was something
that was hindering their research’ and ‘time resolved imaging
was a future need of the community’ [28]. This escalating
interest can also be observed in the number of publications
involving faster scanning applications in the last ten years as
seen in figure 1. Due to the limitation of lab-based hardware,
traditionally faster scanning was largely performed at a syn-
chrotron. It is clear that over the last 10 years this trend has
changed.

Synchrotron CT scanning has a big advantage: the high
intensity monochromatic beams allow for acquisition times of
the order of seconds [29]. For sub-second acquisition times
(potentially at sub-micron voxel sizes) a synchrotron source
is still required, but lab-based machines have continually
improved hardware with faster speeds at greater resolutions
making them a viable alternative in many cases [17, 18, 27].
This is in addition to the much greater availability of lab-based
CT facilities [16]. Exposure times have notably come down:
in the nineties a high resolution scan would take days [30]
whereas now exposure times as low as 20 ms are possible [29]
enabling viable scan times of under a minute. More on hard-
ware improvements and limitations for lab-based faster scan-
ning can be found in Bultreys et al [31].

X-ray CT (XCT) standards such as BSI BS EN ISO 15708
[32] and VDI/VDE 2630 [33] focus on parameter control
to optimise image quality for the most accurate and repeat-
able measurements. Different studies have been carried out on
standardization from inter-laboratory comparisons [34, 35], to
test objects for calibration and accuracy testing [36–39]. Mul-
tiple assessments highlight the need to provide better proced-
ures by international standards: for example an international
comparison performed by Carmignato [40] showed traceab-
ility of dimensional measurements is still problematic even
for expert users. Moroni and Petrò [41] highlight the need for

more procedures as they conclude that ‘even expert operators
have shown not to be able to choose the correct parameters to
obtain the estimates of the performance parameters’. Also du
Plessis et al [42] note that althoughmicro-CT is a good inspec-
tion tool for metal AM, greater standardization and develop-
ment of protocols is required to be accepted as the de facto
assessment tool.While this maturation is ongoing, there is also
a clear need for best practice in high-speed scanning detail-
ing how to find the optimal balance between image quality
and scanning speed. To find this balance image quality needs
quantification but currently there is no standard holistic metric
in XCT [43] and should be decided on a fit-for-purpose basis.
Du Plessis et al [44] has proposed a metric standard that eval-
uates the image quality as a tool for quality control but it is
limited to single material objects.

While sample dependent, and without loss of generality, a
typical XCT acquisition can take upwards of an hour. The term
high-speed is not explicitly defined for XCT but arguably it is
when the parameters are adjusted beyond a standard protocol
such that it is faster than it would normally be, and therefore
typically (significantly) faster than an hour. To complete a scan
as fast as possible, needs must be balanced against the applic-
ation, where the resulting data of high-speed scans whether
they are a minute or 10 min must be of sufficient quality to
observe and measure what is required. The majority of articles
on high-speed CT focuses on the application itself, mainly
in-situ experiments, and not how they achieved the shortest
acquisition time required. Often they provide their choice of
scan parameters but fail to explain the rationale behind them
and found this balance which is often the limiting factor.

The aim of this review is to highlight what trade offs can be
made in the acquisition parameters for speed, analyse how lab-
based high-speed CT is currently being performed to identify
any further anecdotal evidence, and where improvements can
be made for even faster acquisition times. To begin differ-
ent applications of fast scanning are discussed, followed by
an explanation of the acquisition parameters and how they
impact the acquisition time. Previously used parameters in
faster CT scanning are interrogated for optimality, concluding
with recommendations resulting from this review. This will
give general users a view of current fast scanning practices and
how they themselves can move forward in high-speed scan-
ning, and expert users insights as to how they can improve their
acquisition times.

2. Applications of high-speed lab-based CT

Faster scanning in the lab is desirable as it enables the imaging
and measurement of dynamic phenomena which is predomin-
antly only possible at central synchrotron facilities. Alternat-
ively it allows for high-throughput, which is of interest to man-
ufacturing lines where imaging would ideally occur at the rate
of production and for identification of quality issues on indi-
vidual parts in real-time. This section will first discuss devel-
opments in high-throughput CT and then highlight different
applications in academia that will benefit from faster scanning.
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Figure 1. Publications on high speed and in-situ scanning over the last years separated for synchrotron and lab-based scanning obtained
through querying Web of Science as detailed in the supplementary information (available online at stacks.iop.org/MST/33/012003/mmedia).
2021 data is incomplete, but includes publications up to July.

2.1. High-throughput CT

Before considering the reduction of a single object’s acquisi-
tion time for high-throughput scanning, the challenges faced
when exchanging samples in the field of view must be
addressed. Bauza et al [45] showed that this can be very
convenient in an industrial environment as stacking can, for
example, be automated with a multipart fixture. However the
size, shape and material of the object can impact the viabil-
ity of this method, e.g. stacking is limited by the machine size
and required voxel size, or could damage samples. The stacked
objects do not need to be exactly identical since the settings
can be selected on a per-scan basis. For example Hipsley et al
[46] packaged a large number of small fossils in such manner
that 3D volumes were obtained for every fossil in just three
stacked scans. This decreased the total scan time significantly
but thismethod is only useful for a limited number of academic
users, thus automatic sample changes are desired. Somemanu-
facturers have systems specific solutions such as ZEISS’ auto-
loader module that allows loading up to 14 samples [47]. Eber-
horn et al [48] propose another automated handling concept
for inline XCT, redesigning the lab-XCT setup by adding an
industrial robot that picks up a sample and then holds it in scan
position, thus combining the loading and measurement pro-
cedures and has been employed by numerous manufacturers.

Some authors have identified the system geometry as the
constraining factor to achieve high sample throughput and
have demonstrated some novel approaches that utilise con-
veyor belts as shown in figure 2. De Schryver et al [49] rotate
the object at the same time it travels past a static source
and detector, scanning and performing an exact mathematical
reconstruction. This geometry allows for a higher throughput
but at the cost of detectable feature size (about 0.7 mm) caused

by increased blurring due to movement; a higher throughput,
and thus faster scanning, means a lower resolution. Moving
away from a static source and detector as in conventional lab-
based micro-CT an alternative gantry-style option is inspired
by medical CT machines, as in figure 2(b). Here, the con-
veyor belt has a source and detector moving around it at high-
speed in a helical trajectory [50]. Again, the detectable fea-
ture size is much larger than in typical micro-CTmachines due
to the source-object and source-detector distance being fixed
to accommodate a multitude of samples. Warnett et al [51]
explore the use of a real time tomography system similar to an
airport baggage scanner for metrology applications in AM as
in figure 2(c). This geometry consists of a conveyor belt but
with a stationary ring of 900 x-ray sources that are individu-
ally switched and stationary rings of detectors. They show this
geometry has potential, but the application are limited once
again due to the resolution.

Another important aspect of high-throughput focuses
on real-time reconstruction where data is reconstructed as
received, and is seen as essential for automation in inline qual-
ity control. Buurlage et al [52] developed a method to recon-
struct only critical slices, which is faster than reconstruct-
ing the whole 3D volume as is conventional. This certainly
allows for real-time inspection, but is only applicable in cer-
tain circumstances such as when known features are expec-
ted in a known area of interest. Janssens et al [53] propose a
neural-network Hilbert transform to be able to perform fast
inline x-ray inspection where limited-angle projection data
is directly transformed into a 3D volume. They show their
algorithm is faster than the conventional filtered back pro-
jection (FBP) reconstruction by scanning walnuts in a con-
veyor belt geometry and reconstructing good quality images
extremely fast—within 200 ms. However, the training time
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Figure 2. Different geometries for high-throughput CT with figures
adapted from (a) De Schryver et al [49], (b) Brunke et al [50] and
(c) Warnett et al [51].

needed for the algorithm means this method is most suitable
for high-throughput testing of similar objects. Körner et al [54]
reduced the number of projections by interpolating the miss-
ing information from the sinograms and looked at the effect
on topography measurements. They showed this method has
potential to provide the needed information when reducing the
required number of projections by up to 60%. This method
shows potential but their study is limited to a single material
cube, with amore tangible understanding of resolution impacts
still required. The drawback of all the examples mentioned
above is that they can only be used in specialist circumstances
or have a low resolution.

2.2. In-situ

In-situ CT indicates the scanning of a process inside the CT
machine, with the details of acquiring before and after or dur-
ing loading discussed in detail in Gajjar et al [55]. Synonyms
such as 4DCT (where the additional dimension is time), tem-
poral, time-lapse and time resolved imaging are also used
but all refer to a sequence of volumetric scans over a time
period that can be of the order of seconds, minutes, hours
of even days. The frequency and duration of each scan time
depends on the process; some processes require the study of
images every few seconds, while a scan per day is sufficient for
other phenomena. Acquisition while the loading is occurring
is relatively new for lab-CT [29], and continues to add to the
confusing diction—referred to specifically as ‘continuous’ or
‘dynamic’ scanning. Figure 3 gives an overview of the differ-
ent terms. As indicated, in-situ does not necessarily mean fast
acquisition but there is a clearly a (large) subset of such exper-
iments where speed is of the essence, for example to observe
the changing morphology of an operating lithium battery [56]
or pore-scale experiments [31, 57]. Advancing our capability
of high-speed scanning could allow for an even greater range
of in-situ experiments and further detail on phenomena with
additional discrete time points observed in the same period.
Specifically lab-based developments are discussed here, with
details on in-situ synchrotron scanning found in Beckmann
et al [58].

Lab-based in-situ CT started in the early nineties with
the first published examples in [59–61], with Breunig et al
[59] proposing a ‘simple load frame’ to study fatigue cracks.
This was complemented by Bay et al developing an analysis
technique called digital volume correlation [62] that allows
for 3D strain calculation and deformation measurement of
image stacks achieved through in-situ imaging with numer-
ous examples found in literature [63–68]. The range of applic-
ations in lab-based in-situ research is as broad as for regular
CT, with figure 4 depicting examples with different time resol-
utions. In the life sciences it can be used to track growth which
often takes days: Blunk et al [69] study the germination pro-
cess of seeds, Lowe et al [70] the metamorphosis of an insect
and Keyes et al [71] the deformation of soil caused by growing
plant roots. Porosity (like)measurements are also performed in
in-situ settings but in a range of different applications and time
scales. For example, the slow processes of the failure mech-
anism of cementious synthetic foams [72] and the shrinkage
of foam concrete due to drying [73]. In these cases, one or
less scan a day is sufficient to processes whereas fast scanning
was required for situations such as the baking of pastry and
the deformation of beer foam [29]. In micromechanics lab-
based in-situ CT experiments have many applications: from
experiments on the tension loading of glass-fibre reinforced
composited [74] to corrosion damage [75], but currently many
are still performed at synchrotron sources as the processes
need shorter exposure times. Vav̌rík et al [76] showed that
they can reach an exposure time of 3.4 ms with lab-equipment
which already would allow for more dynamic processes to
be imaged with 4DCT. Users are of course limited by the
frame rate of their detector and require an entirely different
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Figure 3. Diagram with different terms that can indicate fast scanning.

perspective to the setup than static objects where scan dura-
tion is less of a consideration. The next section will therefore
focus on the parameters that (indirectly) affect the acquisition
time.

3. Acquisition parameters

CT scanning consists of three stages: acquisition, reconstruc-
tion and analysis. It starts with the acquisition where the object
is placed on a stage between an x-ray source and a detector.
During a standard acquisition process the stage rotates while
the detector captures projections at a number of angles. The
parameters the user can set are: magnification, source power,
voltage, exposure time, the addition of physical filters, bin-
ning, averaging, the number of projections and scan mode.
In order to obtain a volumetric image for analysis the projec-
tions need to be mathematically reconstructed. This is often
performed with software from the machine supplier that has
an FBP/FDK algorithm implementation [79] although further
relevant discussion can be found in the conclusions. Making
an accurate estimation of the measurement error is important
for dimensional measurements, which should include those
arising in the scan process. These can be grouped in five
main categories as seen in figure 5: CT system, data pro-
cessing, the test object, environment and operator. Their influ-
ence has been studied by many authors, for example the effect
of geometrical misalignments [80–83] and the surface of the
test object [84, 85]. Hiller et al [86] investigated the phys-
ical characterization and performance of the x-ray tube and
detector. Villarraga-Gómez et al [87] considered the signific-
ance of temperature and the bias determination. Lifton et al
[88] studied the influence of beam hardening and scatter for
dimensional measurement. And Rodríguez-Sánchez et al [43]
address the understanding of the contribution noise has on

the measurement uncertainty. Also the effects of processing
should be taken in to account: Bartscher et al [89] wrote about
the effect of data filtering and Stolfi et al [90] quantified the
contribution of post-processing.

In order to acquire a scan an operator has to choose a set of
acquisition parameters that ultimately influences the acquisi-
tion time and image quality. There is no analytical method to
determine the optimal scanning parameters [92], but there have
been attempts at making the process more automatic [93]. The
BSI BS EN ISO 15708 [32] and VDI/VDE 2630 [33] stand-
ards do not provide a protocol for parameter selection, leading
to differences in acquisition parameters between operators for
the same object [40]. Experienced users will be aware of the
different acquisition parameters but not all will be aware of the
impact they have on their images. This section will explain
the different parameters and their effects on the reconstruc-
ted image, leading to a discussion on how people are (should)
choose their parameters to decrease the acquisition time in
the subsequent section. To provide context, the workflow in
figure 6 has been provided by experienced users of CIMAT,
University ofWarwick, describing the different steps of setting
the parameters to obtain an optimal image while minimizing
the acquisition time.

3.1. Magnification

The first step is to align the object within the field-of-view and
set the magnification, and thus voxel size. The voxel size is
often confused with spatial resolution; a voxel is the size of the
smallest element in a volume (image stack) with an associated
grey value, whereas the spatial resolution is a measure of the
size of the smallest observable object within a scan which will
be made up of a number of voxels [94]. Spatial resolution is
defined as the smallest separation at which two features can
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Figure 4. Examples of in-situ CT imaging: (a) changes over time of a root system, a time scale of weeks. Reprinted from [77], Copyright
(2013), with permission from Elsevier. (b) Water transport in cement paste, half an hour between images. Reprinted from [78], Copyright
(2015), with permission from Elsevier and (c) baking process of a muffin with a time resolution of 11.3 s. [29] John Wiley & Sons. © 2020
The Authors Journal of Microscopy © 2020 Royal Microscopical Society.

be distinguished as separate entities [32]. The magnification is
given by:

M= SDD/SOD. (1)

This formula shows that the same magnification can be
achieved using different source-to-detector distances (SDDs)
as long as the source-to-object distance is changed accord-
ingly. The physical dimensions of themachine restrict themin-
imum and maximum values for these distances; there is a limit
to how close the object can be to the source while it can still
turn without collision and, if the detector can be moved, it can
only be moved as far as the end of the measurement chamber
of themachine. In the case that both the detector and object can
be moved relative to the source, an operator should pay atten-
tion to the chosen distances as they have influence on the noise
in the image. A smaller SDD will give a brighter projection

image as it follows the inverse square law for intensity. This
means if the distance halves the brightness will be four times
greater and therefore a much faster acquisition time, although
the effect of cone beam artefacts could increase [95].

3.2. Voltage and power

After aligning the object an initial voltage of the x-ray source
has to be set; a guideline might be 80 kV for light materials
such as polymers and 160 kV for heavy materials or larger
objects [96]. The voltage gives the maximum energy of the
polychromatic spectrum whereas the mean energy produced
will in fact be much lower, adjusted for in the next step. Then
the operator should set the tube power in such way that the spot
size is similar to the voxel size. The focal spot size is defined as
the x-ray emitting area on the anode of the x-ray tube as seen
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Figure 5. Ishikawa diagram depicting some of the main influencing
factors for CT measurement. Reprinted from [91], Copyright
(2018), with permission from Elsevier.

from the measuring device [97]. A higher power increases the
intensity of the electron beam, increasing the heat in the focal
point and thus increases the spot size. Power is therefore lim-
iting to spatial resolution as a larger focal spot increases the
Penumbra effect otherwise known as unsharpness. This effect
causes blur at the sample edges in the image which becomes
‘noticeable’ when the spot size exceeds the voxel size [98, 99].
It is important to maximise the power using this rule as a
higher power increases the number of x-ray photons per unit
time and therefore decreases the acquisition time, but keeping
it within the limit will minimise the Penumbra effect. For an
overwhelming majority of x-ray sources a rule of thumb is that
the spot size increases by 1 micron for every Watt, but there
are a few that do not; one should always obtain this inform-
ation from their system manufacturer, or even better measure
it themselves. One can measure the spot size of their particu-
lar setup by evaluating the line profile of a platinum wire or
tungsten sphere as detailed in BS EN 12543 [97].

3.3. Exposure time, voltage and filter

The exposure time, voltage and filters are used to optimise the
brightness and contrast of the image; maximising a broad his-
togram of grey values within the dynamic range of the detector
and the safety limits of the system is preferred for optimal
image quality. The exposure time is proportional to the num-
ber of photons detected per projection, with a longer exposure
meaning a brighter projection image and lower noise at the
cost of a longer acquisition time.

If the minimum grey value count is too high or too low,
the voltage can be adjusted or the filter can be changed. It
can be a difficult task to choose the optimal combination of
voltage and filter for a specific measurement [101]. Figure 7
shows exemplar spectrums with different voltages and filters
where the increase in mean energy and decrease in intensity
can readily be seen to motivate the following discussion. The
voltage sets the maximum energy of the spectrum where the
mean energy is actually much lower. Filters increase the mean
energy of the spectrum produced as they absorb lower energy

x-rays, with the resulting spectrum having an improved pen-
etration. This increased penetration (which maybe required)
comes at the expense of a lower intensity of the spectrum
due to this filter absorption. With the initial voltage selec-
ted without the use of a filter, there are two possibilities;
the minimum grey value count is either too low or it is too
high. If the minimum grey value count is too low, the voltage
should be increased or a filter should be added/increased in
thickness to allow greater penetration as per the examples
in figure 7. The converse of this is true when the minimum
grey value count is too high. This balancing influences the
mean energy of the spectrum, which is also largely respons-
ible for the contrast; the lower the mean energy the better the
contrast.

3.4. Number of projections

The last step is to set the number of projections, preferably
according to the Nyquist sampling criterion found in signal
processing [102]. It dictates that the minimum number of pro-
jections should be;

π

2
∗< window size> (2)

where the window size is the width of the detector in pixels.
This formula is based on the theoretical amount of information
needed for a faithful reconstruction of the image. Villarraga-
Gómez and Smith [103] examined the effect of under sampling
on image quality and dimensional measurements; they con-
cluded that while the image quality decreased the accuracy of
the dimensional measurements did not decrease, although this
was not the case for form measurements such as flatness and
cylindricity.

3.5. Other parameters

There are some final considerations for more experienced
operators. One setting is whether to have continuous acquis-
ition or stepwise rotation acquisition. In other words acquis-
ition with continuous rotation and taking projections or stop-
ping rotation at equal intervals to acquire an projection. The
latter option takes approximately 1.7 times longer, but argu-
ably a reduced the presence of motion artefacts. Another
option is to take multiple projections at every angle and aver-
age them into a single projection (hence called averaging),
which notably reduces the impact of noise. A final com-
mon option is binning. In this process, a square of pixels,
typically 2× 2 or 3× 3, are combined into one pixel result-
ing in a proportionally brighter image (×4 or ×9 respect-
ively) as the signal intensities are summed. It comes at the
cost of spatial resolution as the effective pixel/voxel size is
increased (doubled or tripled), but the increased brightness
of the image allows for a proportionally lower exposure time
leading to a faster acquisition. Often binning does allow for
even shorter minimum exposures to be set within the system as
it is frequently defined by data transfer speeds of the detector,
which could be particularly attractive in the context of fast
scanning.
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Figure 6. Acquisition protocol as provided by the experienced operators at CIMAT, WMG, University of Warwick.

Figure 7. Examples of different spectra to demonstrate the impact of
voltage and filter selection, generated with Spektr 3.0 toolkit [100].

3.6. How to scan faster

Theoretically, the acquisition duration is:

acquisition time= exposure time ∗# of projections. (3)

This assumes the object’s rotation is continuous and no time
is required for data storage. For example if the object stops
turning for every projection the acquisition time should be
approximately multiplied by 1.7 and could be included in the
application, but is clearly impractical in the context of speed.
There are therefore two options; lowering the exposure time
or decreasing the number of projections.

First lowering the exposure time will decrease the num-
ber of photons per projection and thus lowering brightness.

If one is to maintain the dynamic range, this can be com-
pensated by increasing the power since this increases the
photon rate. As a higher power also gives a larger spot size
this could decrease the sharpness of the image, which is shown
in figure 8. Intentionally extreme cases are shown to observe
the unsharpness and it is application dependent for what is
suitable, but for qualitative purposes the potential acquisi-
tion speed gains can be significant. The second option is to
use binning where, for example, four pixels are combined as
one. The advantage of this is a four fold increase in bright-
ness, at the cost of a lower resolution. The third option is
to decrease the SDD as it increases the number of photons
that reach the detector, but could be mechanically limited
(impossible) by the machine. The fourth option is to set a
higher voltage, the increase of brightness comes at a cost
of a reduced contrast. Figure 9 shows a two-phase scanned
object with increased voltage and different filter thicknesses
to illustrate this, examples of the corresponding spectra can
be found in figure 7. One could also not compensate for the
lower exposure time and accept a lower dynamic range, but
this would lead to an image with lower contrast and more
noise.

The number of projections that should be acquired is
defined by the Nyquist criterion. In order to decrease the num-
ber of projections without violating the Nyquist criterion the
window size could be decreased. This can be achieved by
binning, this effectively halves the window size and in that
way the required number of projections is halved, again, at
the expense of a lower resolution. To be explicit, binning has
two effects in terms of acquisition time, both on the expos-
ure time and the number of projections, thus has the most
significant influence across all considerations. A less impact-
ful approach to reduce the effective window size would be
to adjust the magnification allowing more gentle reductions
rather than 50% smaller, but while you reduce the number of
projections you do not achieve the brightness benefit of bin-
ning pixels. One could also not adhere to the Nyquist criterion
and reduce the number of projections without changing the
window size. Figure 10 shows scans of the same object with
different numbers of projections. It can be observed that a
lower number of projections results in more noise and arte-
facts, but again modest reductions could be sufficient without
decreasing measurement accuracy.
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Figure 8. Reconstructed images of a foam acquired using the TESCAN UniTom XL with a voxel size of 25 µm, fixed kV and projection
number, but increasing power and therefore spot size leading to reduced acquisition times. (a) 25 W. Standard spot size of 25 µm, duration
3016 s. (b) 50 W. 50 µm spot, duration 1598 s. (c) 75 W. 75 µm spot, duration 1101 s. (d) 100 W. 100 µm spot, duration 845 s. (e) 125 W.
125 µm spot, duration 694 s.

Figure 9. Reconstructed images of an AlSi matrix with TiB2 particles acquired using the ZEISS Xradia Versa 620 with a voxel size of
0.4 µm, fixed power and projection number, but increasing voltage and different thickness glass (SiO2) filters. (a) 60 kV and 0.35 mm filter
(standard), duration 12 h 25 min. (b) 60 kV and 0.15 mm filter, duration 11 h 34 min. (c) 80 kV and 0.15 mm filter, duration 9 h 51 min.
(d) 80 kV and 0.35 mm filter, duration 10 h 43 min. (e) 100 kV and 0.35 mm filter, duration 9 h 0 min.
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Figure 10. Reconstructed images of a foam acquired using TESCAN UniTom XL with a voxel size of 25 µm, fixed kV and power, but
increasingly reduced projection numbers as a percentage of the Nyquist sampling rule. (a) 100% (3016 projections), duration 346 s. (b) 80%
(2412 projections), duration 277 s. (c) 60% (1810 projections), duration 208 s. (d) 40% (1206 projections), duration 138 s. (e) 20%
(603 projections), duration 69 s.

4. Evaluation of current parameter use

This section will study what acquisition settings are cur-
rently being used for higher-speed acquisition and evaluate
how they might be improved. Presented is a critical review
of publications that utilised high-speed lab-based XCT across
diverse fields from 2010 to 2021, with the exact search and
resulting articles presented in the supplementary information.
Most studies on faster scanning focus on the applications
themselves and not how they approached parameter selection
for the shortest acquisition time. This results in papers with
limited information on their scanning parameters and lack
reasoning (and sacrifices) behind selection. Another implic-
ation is that not all articles with fast scanning were found
using the Web of Knowledge search but a balance was found
between broad search terms and relevant results. The result-
ing papers were checked against our definition of fast and
in-situ scanning discussed in the introduction, with the addi-
tional requirements being the use of a non-medical CT system
set up and experimental results included in the paper. Follow-
ing these restrictions a total of 596 journal articles were mined
for scan parameters, after which a time limit of 1 h per scan
was set for the parameter comparison.

The focus is on commercial machines as these are (more)
accessible to non-expert users and easier to compare with pub-
licly available information on the detector and source perform-
ance. A few publications that use in-house built machines with
very fast acquisition times will be mentioned as those give
an impression of the potential for dedicated high-speed sys-
tems. Figure 11 distinguishes the different manufacturers and
acquisition times across the publications. ZEISS systems have

been themost popular for high-speed and in-situ scanningwith
50% more publications than any other machine, but clearly
this largely comes from acquisitions greater than an hour. The
authors propose two potential reasons; one might be the lower
concern for scan speed and more the application for which
these were sufficient, or alternatively it might be because they
were an early adopter of integrating commercially available
in-situ rigs (e.g. Deben) and making it easier for users to run
these types of experiments. Another notable observation is that
TESCAN has the highest proportion of sub 1 min acquisitions
and overall their distribution is more weighted to the highest
speed experiments. They have a much lower number of pub-
lications however which likely stems from their relatively later
entry to market, with the earliest publication in 2016.

4.1. Exposure time

Table 1 gives an overview of the fastest acquisitions times
performed on lab-based machines. Dewanckele et al [29] are
clearly the fastest of the commercially available machines;
their acquisition time is 9.4 s. The only systems currently avail-
able on the market that can seemingly achieve these sorts of
speeds are all made by TESCAN that has 4D scanning as their
marketed unique selling point. Of the other system manufac-
turers, Nikon having been fast enough to achieve 1 min scans
[104, 105], are more than twice as slow when purely consider-
ing exposure time. There are no ZEISS’ scans in the table;4D
scans have been performed with their machines, but predom-
inantly on long processes with scans taking more than 1 h
as already highlighted. For comparison, the typical minimum
exposure times under 2000 × 2000 detector modes without

10
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Figure 11. Overview of number of publication of the different commercially available XCT system manufacturers subdivided for
acquisition time.

Table 1. Overview of the fastest scans performed on lab based systems as identified in literature search, sorted by acquisition time, similar
publications with 12 s acquisition times can be found in [57, 106, 107].

Year Author
Acquisition
time (s) Brand

Parameters

Exposure
time (s) Projections

Voltage
(kV) Power (W)

Detector
size

Voxel
size (µm)

2017 Vav̌rík et al [76] 1 Custom system 0.0034 252 60 50 256 × 256 40
2014 Eggert et al [108] 8 Custom system 0.034 236 60 14.4 512 × 512 17
2020 Dewanckele et al

[29]
9.4 TESCAN 0.017 550 130 35 500 × 400 150

2016 Bultreys et al [31] 12 TESCAN 0.02 600 130 16 657 × 657 14.8

binning for a ZEISS Xradia machine is 1.0 s, while Nikon
can achieve 0.133 s and TESCAN 0.05 s (faster speeds can be
achieved by binning as can be seen in table). These limitations
on exposure time do not only depend on specifications of the
system’s detector and if useable under the setup, but they may
also be further restricted by software to ensure quality scans
as is the case for the ZEISS Versa. The detector can even vary
between installations and is why further comment is not given
whether a faster exposure could have been used, but current
common flat panel installations are Varian/Perkin Elmer 1621
or 4343 (or variations thereof) if the reader wishes to find out
more.

The exposure time influences the intensity received at the
detector which is what onewould ideallymaximise for optimal
image quality. Some systems allow shortening the SDDwhich
enables users to reduce the exposure time while keeping the
same photon intensity as described earlier. Another way to
decrease the exposure time in all systems is by increasing the
source power. This will increase the number of photons per
unit time and thus a lower exposure time can be used. However
this can cause increases in the spot size as discussed, eventu-
ally leading to a notable unsharpness.

Figure 12 shows the spot size (µm) against voxel size (µm)
across different publications with acquisition times below 1 h.
The spot size within a specific study has been determined by
relating the power stated to the spot size value provided for that
source by themanufacturers. The dotted line indicates themost

optimal situation with minimised unsharpness; the voxel size
equal to the spot size. The expectation would be that the major-
ity of the data points lie roughly along this line with maybe a
few above where they have sacrificed quality for speed, but
there are a notable number below the threshold. For those
where the spot size is larger than voxel size, the authors have
likely/hopefully identified that their image quality does not
measurably suffer for their intended purpose. Note that ZEISS’
Xradia operators will never violate the spot size requirement
due to the software that maintains the spot size at 3 or 4
microns up to 10 W; these studies account for a high propor-
tion below the line. Experiments utilising Baker Hughes sys-
tems are almost all exceeding this limit, as are the few from
North Star Imaging. Nikon based inspections are much more
equally distributed either side of the line indicating than many
here could improve their acquisition times, if it were bene-
ficial, by increasing their power and thus reducing exposure
and acquisition times. For the TESCAN based publications in
table 1 and figure 12 it is interesting that the spot size could
theoretically be increased as the voxel size of the scans is rel-
atively large. However, in this system the source-detector geo-
metry can be particularly compact so it is more likely that the
maximum grey value count without saturating the detector was
reached at the chosen exposure and binning.

Adjusting the power is not the only option when aim-
ing to decrease the exposure time, but it is the option one
can interrogate directly from information in the publications.
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Figure 12. Spot size vs. voxel size across the identified
publications. Spot size has been determined from manufacturer
system materials and pers. comms. but may not reflect the
calibration of the machine at the time.

Brightness can also be increased by setting a higher voltage as
demonstrated earlier in figure 9 but this can reduce the con-
trast. Depending on the application this may not be critical
and can therefore benefit a faster acquisition time. Addition-
ally it is assumed studies used the whole dynamic range of the
detector but this was not stated in any publication. Not using
the full dynamic range results in darker projection images
which will likely increase noise. Likewise the detector gain,
an amplification of the signal received by the detector at a
cost of increasing the noise, was largely not given by authors,
but it is assumed the gain and therefore amplification was the
maximum so the smallest exposure times were possible. As all
the options to lower exposure time reduce image quality users
need to assess which aspects they are willing to comprise for
their application to minimise impact.

4.2. Number of projections

Instead of decreasing the exposure time for faster scans the
alternative is to reduce the number of projections. For optimal
image quality the number of projections should obey the
Nyquist sampling rule when using FBP reconstruction meth-
ods. This is the reason why detector binning not only increases
the brightness but has the added benefit of proportionally redu-
cing the minimum number of projections.

Figure 13 shows the distribution of the percentages of
Nyquist imposed projections across publications, once again
sub-divided by acquisition time. Clearly most operators do
not obey the Nyquist sampling rule when performing in-situ
and high-speed scanning in the lab, favoured as the quick-
est and most impactful way of reducing acquisition times. In
fact many do not have half of the recommended number of

Figure 13. Histogram of the # of projections/(window size× π
2 ) for

a single scan in the fast scans surveyed in the literature. When the
number is 1 or higher the Nyquist sample rule is obeyed.

projections. The average is 60% and from the timing divi-
sions, seemingly acquisitions less than 5 min are only viable
then. One exception is a sub-minute (45 s) scan that actually
over-sampled at 127% of Nyquist [109]. In this experiment
they used a home-built micro-CT system to scan mice using
an exposure time of 40 ms, 400 projections and a resulting
window size of 200 pixels after a binning factor of 4. The small
window size and fast detector rate allow for a sub-minute scan
while still over-sampling with regards to the Nyquist criterion.

There are some remarkable cases of around 10% such
as Luksic et al [104] in their experiments characterising the
foaming process during glass melting. While their parameter
selection is not discussed it is clear the 58 s scans are out of
necessity rather than choice since the whole experiment is 8
min long. While this results in significant image processing
challenges as can be seen in figure 14 and the smaller features
are questionablymeasured, themacro pores are clear and suffi-
cient to gain insight into the process their task of understanding
porosity changes with time.

All high-speed/in-situ publications included in figure 13
use FBP for fair comparative purposes, but there were 9 out
of the 596 studies from the literature search that used iterat-
ive reconstruction methods that typically require a lower num-
bers of projections [55, 110–117]. For example Myers et al
[113] experiments with two-phase fluid flow, used an iterative
algorithm that exploits the a priori knowledge of the sample.
This method reduced the number of projections from 720 in
case of FBP to just 72 projections (window size 512 × 512)
improving their time resolution by a factor of ten. Utilising
novel reconstruction is more common place at the synchrotron
but in lab-based high-speed/in-situ experiments it is currently
a rarity.

4.3. Summary

High-speed and in-situ experiments in the lab have been per-
formed in a variety of manufacturers systems. ZEISS has been
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Figure 14. Experiment of foaming during glass melting [104] where around 10% of the required projections were used. (a) Initial raw
reconstruction with image artefacts. (b) Repaired reconstruction. (c) Segmented bubbles within foam. Reprinted from [104], Copyright
(2020), with permission from Elsevier.

the most popular system in this area over the period searched.
The fastest acquisitions have been achieved on the TESCAN
system, which the analysis indicates is due to the lower usable
exposure times. Publications using this manufacturers systems
do not comply with the Nyquist criterion, on average using
60% of the recommended projections, but this is comparable
to others studies that utilised fast and in-situ scanning. It can
be concluded that many operators can improve their scanning
speed by increasing their spot size to match the voxel size
therefore reducing exposure time without decreasing image
quality, although this is not possible for every system due
to both hardware and software. The Nyquist sample rule is
not met by most operators, indicating that the recommended
number of projections can be decreased while not impacting
image quality for measurement and observation. These tweaks
in acquisition protocol may still result in scan times that are
too slow for the specific application which may have been
the justification for even fewer projections and even greater
spot sizes (increased power) identified, assuming the operator
was familiar with the standardised parameter selection pro-
cess. When users are making these decisions the final choices
should always result in sufficient image quality for what they
specifically want to observe and measure.

5. Challenges and concluding remarks

Driving the need for faster imaging with lab-based CT systems
is a growing interest in in-situ experiments and a need for high-
throughput resolutions that are fit for purpose. Currently most
lab-based in-situ scanning is still relatively slow and the fast-
est acquisitions are limited to a few commercial machines and
in-house built CT systems. In this review the parameters have
been evaluated against a typical best practice protocol optim-
ised for image quality and measurement accuracy within the
shortest acquisition time.

Following this analysis it is evident that there is an incon-
sistent approach to deciding how to minimise the acquisition
time of a scan for high-speed and in-situ scanning. From the
comparisons and our own operation, it is recommended to:

• Maximise your spot size so it is similar to the voxel size.
This will enable the fastest exposures while maintaining the
optimal brightness and dynamic range.

• Binning. Most studies utilise this for high-speed since for
2 × 2 it results in an increase of brightness four times pro-
portionally affecting the exposure, which often outweighs
the impact of doubling the resolution. Further the number of
projections can be halved leading to an eight times increase
in scan time.

• Anecdotally, using about 60% of projection results in a
workable image quality [103], but users should check this
is suitable for their application.

These items have the greatest impact but there are a few
more deviations from the standardised parameter selection to
measurably reduce exposure. However, they have a detriment
to measurement accuracy and image quality that currently is
not quantifiable prior to acquisition.

• Higher energies (kV) will slightly increase brightness allow-
ing for a reduction in exposure time, but this can reduce the
image contrast.

• Exceeding the power/spot size rule will proportionally
increase brightness. This can increase unsharpness.

• Impose a lower than optimal exposure so the whole dynamic
range is not used. This can increase noise and decrease con-
trast.

The impact on image quality and measurement is both
sample and task specific, so to determine the optimal speed
it is always advised to run a sensitivity study. The first steps
on quantifying image quality have been taken by proposing
metrics for CT [43, 44], but more research on image quality
linked with fit for purpose is essential for creating fast scan-
ning protocols for different applications.

Future hardware improvements could impact the acquisi-
tion speed without the need to compromise on image qual-
ity. Current developments of new sources will bring lab-based
capabilities closer to synchrotron facilities. Gruse et al [118]
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demonstrated the application of laser driven sources that could
be scaled down for industrial applications. These utilised 45
femtosecond pulses of x-rays that could provide micron-scale
resolution with fast scanning. Hornberger et al [119] presen-
ted the Compact Light Source that has a high average flux and
brightness, but it is currently very expensive.

Minimising the amount of data to be acquired will have
the greatest impact on acquisition speeds, as the advent of
new hardware can be relatively slow but the algorithms to
utilise less data are available now. There are a number of
papers that show a fewer number of projections could be suf-
ficient to obtain a suitable image quality and measurement
accuracy by using a variety of iterative reconstruction methods
[120–123]. However, most operators use FBP reconstruction
methods because it is supplied by manufacturer. If operators
want to use iterative reconstruction there is a level of cod-
ing they will have to implement through open-source software
[124–127] making it appear as ‘specialist’ by typical operat-
ors and under-used, despite the advantages of faster acquisition
times. Beyond iterative reconstruction machine learningmeth-
ods have also shown promise in coping with less data [128],
but again are currently ‘expert/specialist’ in their accessibil-
ity by the novice user. The current main disadvantage of iter-
ative algorithms is that the required computational power is
much larger and hence the time to reconstruct is much longer,
although this time is reducingwith the availability of evermore
powerful GPUs.When considering a ‘scan’ as both the acquis-
ition and reconstruction time the benefit gained of a faster
acquisition with fewer projections might be negated by the
duration of reconstruction; in the case of high-throughput this
is the most impactful as immediacy of results is often required,
but even in-situ experiments can suffer if one is unwilling to
wait days/weeks/months for their data. This will likely change
in the future as the availability of computational power is still
rising fast. This shows both the interest in iterative recon-
struction for in-situ measurements and the need for protocols
based on the information required from a scan and again the
great potential of iterative methods for reducing the number of
projections.
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