

Asian Journal of Education and Social Studies

Volume 46, Issue 2, Page 40-53, 2023; Article no.AJESS.101729 ISSN: 2581-6268

TPACK, Instructional Competence, and Teachers' Attitude toward Internet Use: A Structural Equation Model in Readiness to Teach Online in Filipino

Dayanara P. Besa a* and Marilou Y. Limpot a

^a University of Mindanao - Professional Schools, Matina Campus, Davao City, Philippines.

Authors' contributions

This work was carried out in collaboration between both authors. Author DPB designed the study, conducted the gathering of data, wrote the protocol. Author MYL guided the author DPB in writing the entire study all throughout. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJESS/2023/v46i21001

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/101729

Received: 19/04/2023 Accepted: 22/06/2023 Published: 03/07/2023

Original Research Article

ABSTRACT

Aim: To investigate the best-fit model for teachers' readiness in online teaching using Structural Equation Modeling (SEM) to analyze the relationship between TPACK, instructional competence, and teachers' attitudes toward internet use.

Study Design: Quantitative Causal Analysis.

Place and Duration of Study: Region XII, Philippines, during the second semester 2022.

Methodology: The stratified random sampling technique was utilized using Raosoft Application to select the 674 college teachers from various colleges and universities in Region XII. An expert-validated and pilot-tested survey questionnaire was used to collect the data. Moreover, statistical tools used for the study were mean, which described the levels of the variables; Standard Deviation (SD), which measured the dispersion of a frequency distribution; Multiple Regression, which identified significant predictors of readiness to teach online; and Pearson Product Moment

*Corresponding author: Email: dayanara.besa@umindanao.edu.ph;

Asian J. Educ. Soc. Stud., vol. 46, no. 2, pp. 40-53, 2023

correlation Coefficient, which determined the relationship of the variables. The Structural Equation Model (SEM) was also used to analyze multiple variables and their relationships.

Results: The level of TPACK among teachers was very high, but compared to other exogenous variables, it was the lowest, which indicates that teachers are not fully proficient. Moreover, teachers' instructional competence level was very high, which implies that the variables were often observed among teachers. It also showed a significant relationship between the TPACK, instructional competence, and Attitude toward internet use toward readiness to teach online. The Attitude toward internet use and instructional competence influenced teachers' readiness to teach online, while TPACK did not influence teachers' willingness to teach online. Model 5 had consistent indices among the five investigated models and indicated the best fit for the data. The goodness of fit result was highly acceptable, as all the indices met the specified standards against the obtained fit value of the model.

Conclusion: Teachers' levels of Technological Pedagogical Content Knowledge (TPACK) are low, suggesting they still need to be fully adept at using technology in the classroom. To improve readiness for online teaching, it is essential to consider teachers' attitudes toward internet use and TPACK integration into professional development programs. Model 5 offered the greatest fit for the data, suggesting authorities should take instructors' TPACK into account for training and knowledge updates in integrating technology into 21st-century teaching.

Keywords: TPACK; instructional competence; teachers' attitude toward internet use; readiness to teach online; SEM; Philippines.

1. INTRODUCTION

Education is one of the industries most affected by COVID-19 and has exerted efforts in preparing online teaching and learning methods to ensure that education continues despite the pandemic. Some have yet to encounter difficulties in implementing modern education. What is more serious is that most higher education institutions quickly shifted emergency remote or online teaching even after the semester had begun. However, many instructors were not prepared to teach online because they lacked the basic technology or specialized services required for online teaching, and only a few teachers were willing to teach online [1,2].

It is essential to understand the readiness of teachers to teach online, especially during the pandemic, as it makes a significant difference in the overall performance of online courses and programs, exploring and implementing various modern teaching methods apart from traditional ones. Many teachers need to learn about online teaching or how to support online learning because it is not included in many teacher training programs. Consider that the teaching and learning process is not confined to the classroom alone but can happen anywhere [3-5].

Generally, this study aimed at determining the best-fit model for teachers' readiness in online

teaching using Structural Equation Modeling (SEM). In particular, this study sought to determine the level of TRACK of the teachers, level of instructional competence, level of Attitude towards internet use, level of readiness to teach online in Filipino, and the significant relationship between the three exogenous and endogenous variables.

For teachers, it is essential to assess TPACK (Technological Pedagogical Content Knowledge) in professional development to be prepared for the rapid expansion of online teaching in higher education. Therefore, it is necessary to strengthen teachers' ability to use technology in teaching. Recognizing teachers' instructional competence and attitudes toward internet use in the importance and understanding of teaching plays a significant role in applying online teaching's objectives, activities, and challenges. Consequently, there are some institutions, teachers, and students who are not ready to adapt to the new situation, so it is essential to assess the extent of teachers' readiness to teach in this new era [6-8].

The common framework is not based on ideas originating from a single theory of study but on a combination of various aspects from multiple theories. The connection between TPACK and readiness for the new wave is anchored in the propositions of different authors. It can analyze how teachers should be prepared to teach online as it addresses the three main components

needed to ensure high-quality teaching. It is also proven in studies that TPACK is essential in examining how the TPACK model is integrated into professional development programs for teachers and prepared for teaching towards the rapid expansion of online education [9-11,6].

The connectivism theory was used as a means to enhance understanding of technology use in teaching through the application of the TPACK model. It has been established that technology influences all theoretical perspectives by providing methods and unique teaching approaches [12].

The Cultural Historical Activity Theory (CHAT) explains how technology can mediate Teaching for transformative learning. Intelligent use of technology in Teaching requires the development of a complex and aligned form of knowledge that links technology to teaching methods and content. Furthermore, Bandura's self-efficacy theory was also used in the study, mentioning that TPACK can be used to investigate readiness for online teaching [13,14].

For instructional competence, the preparation and development of online teachers need to focus on fostering critical teaching skills that align with Mezirow's transformative learning theory and their students. Teachers should rely on something other than accepting suggested competencies and roles. However, they should critically reflect on them to adapt to the new teaching environment with their assumptions towards online Teaching and learning [15,16].

The experience of teachers in online Teaching is based on a process of online teaching competencies and applied to novice online instructors to discover the effects of online teaching competencies and challenges in transitioning from traditional to online teaching. It can also assist trainers in designing targeted training programs. There is a need to develop online instruments for teaching competencies from the lens of activity theory and examine the online teaching competencies of instructors. Linked to instructional competence is the Community of Inquiry Model (COI) based on social presence theory to identify and categorize critical competencies for successful online

Teaching from the perspectives of experienced individuals such as teachers, designers, administrators, support staff, and managers. These competencies can be addressed in the professional development of teachers to prepare them and enable their success in online teaching [17-19].

The Technology Acceptance Model (TAM) by Davis is highlighted in the study, a theoretical framework used to identify how new technologies can be adopted in different situations and contexts that affect human behavior. TAM adapts the reasonable action theory to the information system and user behavior. It can be linked to the study in that using TAM can improve course design to promote students' understanding and usefulness of online education, as well as enhance positive attitudes towards training in online education [20-23].

The researchers were motivated to conduct this study to assist in the current situation, preparing teachers for online teaching in Filipino, and to achieve the goal of quality education despite the pandemic and enhance the outcomes of academic programs. However, a local study has yet to be conducted to determine whether there is a relationship between the exogenous and endogenous variables. Therefore, this study aims to measure the importance of teachers' readiness to teach online, especially in the era of technology and globalization.

this study investigated the most Hence, appropriate model for teachers' readiness to teach online in Filipino. The objectives of this study were also to address the following questions: first, to determine the level of TPACK among teachers; second, to identify the of teaching competence; third, ascertain the level of Attitude toward internet use; fourth, to ascertain the level of readiness to determine teach online: fifth. to significant relationship between the three exogenous variables and endogenous variable; sixth, to assess the singular and combined influence of the exogenous variables on the readiness to teach online; lastly, to determine what model best fits willingness to teach online.

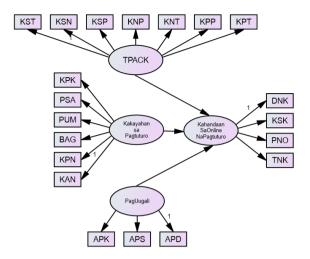


Fig. 1. The conceptual model depicting the direct relationships between the latent exogenous variables

Legend: KPT-Technological Pedagogical Content APD-Affective Aspects Knowledge APS-Behavior Aspects KST-Technology Knowledge KAN- Content Competence APK-Cognitive Aspects KSN-Content Knowledge KPN- Competence in Transmitting the DNK-Course Design KSP-Pedagogical Knowledge Content to the Learner KSK-Course Communication KNP-Pedagogical Content Knowledge BAG-Teachers' Lesson Log/Plan PNO-Time Management KNT-Technological Content Knowledge PUM-Students' Engagement KPP-Technological Pedagogical PSA-Classroom Management Knowledge KPK-Learning Environment

2. METHODOLOGY

2.1 Respondents

The respondents in the study were college teachers selected from the universities in Region XII: 145 from General Santos City, 194 from Tacurong City, 222 from Kabacan, North Cotabato, and 113 from Koronadal City, South Cotabato. The sample size from each university was determined based on the size of their population to obtain a total of 674 respondents. They were selected using the stratified random sampling technique using Raosoft Application. It may be considered a limitation of this study. Hence, the findings of this [24] may only be true to the respondents and may only be applied to some of the population of teachers with teaching experiences of up to five years in Region XII.

These respondents were college teachers during the academic year 2022-2023, but they needed teaching experience for up to five years. Their participation was with the permission of the school administrators. However, college teachers with no teaching experience of up to five years outside the research sites were excluded. Teachers who wanted to participate in the research but needed consent from their superiors

were also not allowed to participate. Moreover, teachers who did not attend the orientation for this study were also not permitted to participate.

2.2 Research Instrument

The researcher utilized a survey questionnaire as the instrument for the study. The researcher also employed various methods to ensure the validity of the created instrument. The researcher consulted with advisors and a panel of experts and sought their feedback to validate the questionnaire used in the study. The mean score obtained from the six validators was 4.19, indicating that the questions were well-crafted and valid. A preliminary survey or pilot testing was conducted among college teachers. Each item was presented to a statistician to assess the validity of each item in the research, and "Cronbach's alpha procedure" was used to determine the validity of the items. Likert-type scales were also used to calculate and present Cronbach's alpha coefficient for the internal consistency reliability of the scale. Therefore, TPACK has a Cronbach's alpha of 0.963: Teaching Competence has 0.959, Attitudes Internet Use has 0.928, Preparedness for Online Teaching has 0.954, indicating excellent reliability.

The following scale was used to accurately measure the level of TPACK. Instructional Competence. Teachers' attitudes toward Internet Use, and Readiness to Teach Online in Filipino colleges. It provides descriptive categories and interpretations of the assessment based on the mean difference. The Mean Difference of 4.20-5.00 with a Descriptive Level of Very High with Interpretation of the assessment is consistently demonstrated at a very high level. It indicates exceptional proficiency and expertise in the respective category. The Mean Difference of 3.40-4.19 with a Descriptive Level of High with the Interpretation of the assessment is frequently demonstrated at a high level. It indicates good competence and proficiency in the respective category. The mean difference of 2.50-3.39 with a Descriptive Level of Moderate and the Interpretation of the assessment is occasionally demonstrated at a moderate level. It indicates a general knowledge and proficiency in the respective category. The mean difference of 1.80-2.59 with the Descriptive Level of Low with the Interpretation of the assessment is rarely demonstrated at a low level. It indicates a need for more knowledge and proficiency in the respective category. A mean difference of 1.00-1.79 with the ddescriptive level of Very Low and the Interpretation of the assessment is never demonstrated at a very low level. It indicates a significant need for more knowledge and proficiency in the respective category.

3. RESULTS AND DISCUSSION

3.1 Level of TPACK

Presented in Table 1 is the overall standard deviation for TPACK was 0.66 while the total mean was 4.23 with a descriptive level of Very High, meaning that TPACK is often evident by the college teachers in Region XII. Based on the results, teachers use TPACK to effectively integrate technology into their teaching skills.

From the study, it is evident that teachers have a positive attitude towards using TPACK because they recognize that technology serves as a tool that opens up opportunities to enhance knowledge and learning experiences for their students [25-27].

Based on the indicators, it is evident that TPACK obtained the highest level among all. It can be supported by studies that show higher proficiency in Technological Pedagogical Content Knowledge, as it involves the synthesis and various forms of technology integration that enable teachers to design syllabi, and lesson

plans, use instructional materials, and consider technology in Teaching and learning as a source of study and literature. Furthermore, teachers with a high level of Technological Pedagogical Content Knowledge demonstrate a higher level of technology integration in their lesson planning than those with lower levels of Technological Pedagogical Content Knowledge [28,29].

On the other hand, "Content Knowledge" and "Pedagogical Knowledge" obtained the lowest levels among all indicators, with a mean of 4.19 and a high descriptive level. It suggests that "Pedagogical "Content Knowledge" and Knowledge" are connected, emphasizing that teachers must create learning environments where students can acquire knowledge. With sufficient content knowledge, learning outcomes will be expanded, highlighting the importance for teachers to have a deep understanding of the subject matter and the ability to apply teaching strategies to capture students' attention and facilitate learning. However, other studies suggest that teachers need adequate training to implement new teaching methods, utilize innovative teaching skills, and utilize various sources of knowledge, including Content Knowledge, to enhance instructional delivery in classrooms for quality teaching [30-33].

3.2 Level of Instructional Competence of Teachers

Table 2 shows the overall mean score is 4.41 with a standard deviation of 0.46, described as very high, which means that the instructors' instructional competence is very evident. Teachers must reflect on their instructional competence to create a positive classroom environment and identify the strategies to provide the appropriate instruction required by the students. It is because teachers' primary role is to ensure students academic success.

The study has proven that it is necessary to encourage teachers to improve and focus on teaching in schools because it positively impacts students' lives. Therefore, it is essential to develop teaching practices to ensure quality education. Globalization has set professional standards for teachers, and the competencies involved have placed greater emphasis on developing teachers' skills [34-36].

3.3 Level of Attitude Toward Internet Use

Presented in Table 3 is the level of teachers' attitudes toward internet use. The overall mean

rating is 4.38 with a standard deviation of 0.46, described as very high, which means that the Attitude of teachers using the internet is always evident. Based on the study's outcome, using the Internet in Teaching and learning yields significant positive results when combined with modern technology aligned with a 21st-century education.

Based on the study's findings, using the internet in teaching and learning yields significantly positive results when coupled with modern technology that aligns with 21st-century education. For teachers to effectively utilize technology within the classroom, it is crucial to have a stable internet connection, modern infrastructure, technical support, sufficient time, a flexible curriculum, a combination of traditional and contemporary approaches, and practical training. These factors enable teachers to develop a positive attitude towards utilizing the

internet with any technology effectively [37-39].

3.4 Level of Readiness to Teach Online in Filipino

Table 4 reveals the level of readiness of teachers to teach online in Region XII. The results are supported by previous studies indicating the positive impact of implementing online teaching and emphasizing that more experience in online instruction leads to better preparedness for online education. Possessing professional skills in utilizing technology greatly enhances readiness for online teaching. Technological proficiency and basic computer skills, as well as internet usage such as website searching, play a crucial role as they contribute to specific levels of content comprehension, engagement, activity integration, and creative application in teaching and learning [40-45].

Table 1. Level of TPACK (Technological Pedagogical Content Knowledge)

Indicators	SD	Mean	Descriptive Level
Technology Knowledge	0.76	4.21	Very High
Content Knowledge	1.09	4.19	High
Pedagogical Knowledge	0.76	4.19	High
Pedagogical Content Knowledge	0.76	4.25	Very High
Technological Content Knowledge	0.76	4.20	Very High
Technological Pedagogical Knowledge	0.80	4.24	Very High
Technological Pedagogical Content Knowledge	0.72	4.30	Very High
Total	0.66	4.23	Very High

Table 2. Level of instructional competence

Indicators	SD	Mean	Descriptive Level
Content Competence	0.78	4.23	Very High
Competence in Transmitting the Content to the	0.61	4.31	Very High
Learner			-
Teachers' Lesson Log/Plan	0.61	4.44	Very High
Students' Engagement	0.51	4.50	Very High
Classroom Management	0.55	4.49	Very High
Learning Environment	0.52	4.51	Very High
Total	0.46	4.41	Very High

Table 3. Level of teachers' attitude toward internet use

Indicators	SD	Mean	Descriptive Level
Affective Aspects	0.55	4.36	Very High
Behavior Aspects	0.49	4.41	Very High
Cognitive Aspects	0.56	4.36	Very High
Total	0.46	4.38	Very High

Table 4. Level of readiness to teach online

Indicators	SD	Mean	Descriptive Level
Course Design	0.52	4.33	Very High
Course Communication	0.46	4.36	Very High
Time Management	0.47	4.40	Very High
Technical Competence	0.45	4.44	Very High
Total	0.40	4.38	Very High

3.5 Significant relationship between the three exogenous variables and the endogenous variable

Table 5 is divided into tables 5a, 5b, and 5c. A significant relationship exists between TPACK with a correlation coefficient of r=0.471, instructional competence with r=0.602, and Attitude toward internet use with a correlation coefficient of r=0.790, thus rejecting the null hypothesis. It suggests that teachers' readiness to teach online in Filipino is related to and can be explained by effective teaching methods.

Table 5a also affects the use of technology and teachers' preparedness in the classroom because their confidence also influences their students. If teachers have confidence in integrating content knowledge and technology, they are also prepared for online teaching to facilitate the learning process of their students [46,47].

The results of Table 5b aligned with previous studies that have shown a significant relationship between Instructional Competence and Readiness to Teach Online. This finding also supports the transformative learning theory. It helps teachers process their learning as they adapt to the new teaching environment with their assumptions towards online teaching and learning. Therefore, encouraging teachers to engage in critical reflection enhances their teaching ability as they actively participate in the changes happening in teaching their students [48-52].

Furthermore, Table 5c agreed with the significant relationship between Attitude toward Internet Use and Readiness for Online Teaching. The overall Attitude of teachers towards internet use plays a meaningful role when combined with practical technology training to make it effective in Online Teaching. The sudden shift to online Teaching revealed significant correlations teachers' attitudes. both advantages and disadvantages, regarding preparedness for online classes, such as the need for reliable

internet connection, technical support, time, flexible curriculum, and methods. The reasonable action theory used in this study also supports the result that a teacher's intentional Attitude towards using the internet improves their Teaching to adapt and be prepared for online education [53-56].

3.6 The singular and combined influence of the exogenous variables on the readiness to teach online

Table 6 presents the results of the regression analysis system describing significant predictors of Teacher Readiness to Teach Online in Filipino across observed variables in the research. The analysis reveals that the standard coefficient of Teacher Attitude towards Internet Use has the highest Beta value at .681. It indicates that Teacher Readiness for Online Teaching in Filipino is greatly influenced by Teacher Attitude toward Internet Use.

This finding aligns with previous studies that demonstrate the significance of attitudes toward internet use as a crucial predictor of readiness to teach online among teachers. Along with changes in the education system, teachers' willingness to teach online, including the current demand for behavior, planning strategies to and enhancing professionalism, improve knowledge, skills, and abilities in utilizing the internet or technology for language instruction, are essential. Therefore, teachers and students exhibit a positive attitude towards using the internet for language teaching through online platforms. However, this significantly challenges their emotional, social, and cognitive aspects as teacher-student pairs. Consequently, instructors must be capable of designing and delivering instruction according to their needs. Similarly, Instructional Competence has a Beta value of .142, indicating a significant predictor of teachers' teaching competence. This result is in line with the studies conducted by [57-64], which support and align with these findings.

The Attitude toward internet use and instructional competence influence teachers' readiness for Online Teaching. In contrast, TPACK does not affect the enthusiasm for online education among instructors in Region XII. The study revealed that teachers have low TPACK scores due to institutional factors that influence the adoption of TPACK among educators. It is supported by the TPACK theory, which is essential to explore professional development programs and prepare teachers for teaching, primarily online. On the other hand, Siemens' connectivism theory is necessary to enhance the understanding and application of technology in content and Teaching methods [65].

3.7 Model Best Fits Readiness to Teach Online

The best-fit model was identified based on the criterion that all indices must consistently fall within acceptable ranges. P-value should be greater than 0.05, and Chi-square/degrees of freedom (CMIN/DF) is 0 < value < 2. Further, the goodness of fit index (GFI), comparative fit index (CFI), normed fit index, and tucker-Lewis Index should be greater than 0.95. The root-mean-square error (RMSEA) must be less than 0.05, and its corresponding P-close value must be greater than 0.05.

Based on the summary in Table 7, the first to fourth models can be considered inappropriate since they did not achieve the expected standards. Meanwhile, the fifth model exhibits the most appropriate as it has reached the expected standards.

It can mean that there is a best-fit model for teachers' readiness to teach online in Filipino in

Region XII. The model demonstrates the importance of TPACK and Attitude toward internet use as predictors of teachers' willingness to teach online.

It means the teachers' Attitude toward internet use enhances their readiness for online teaching. Through this, they develop positive attitudes in designing, delivering, and using various teaching materials according to the needs of their students. It means that a teacher with attitudes aligned with the development of 21st-century teaching skills is a factor in successfully integrating technology in language teaching and searching for required information in class. Meanwhile, instructional competence should have been included in the most appropriate model. It was supported that teachers' online teaching competence is not expected, sudden. and has a high potential for anxiety and changes in their teaching abilities. It can be explained in the context that teachers were forced to continue teaching and adapt to sudden changes to ensure the continuity of their student's education [66].

This result is also aligned with the transformative learning theory, which helps teachers in their ability to process their learning as they reflect and adapt to the new teaching environment, with their assumptions towards online teaching and learning.

Fig. 2. shows the Interrelationship Between TPACK with five indicators, Teachers' Attitude toward the internet with three indicators, and their Direct Casual Relationship towards Readiness to Teach Online.

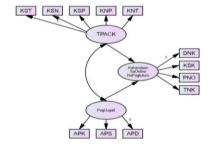


Fig. 2. Best fit model in readiness to teach online in Filipino

Legend:

KST-Technology Knowledge KSN-Content Knowledge KSP-Pedagogical Knowledge KNP-Pedagogical Content Knowledge KNT-Technological Content Knowledge KPP-Technological Pedagogical Knowledge KPT-Technological Pedagogical Content Knowledge APD-Affective Aspects APS-Behavior Aspects APK-Cognitive Aspects DNK-Course Design KSK-Course Communication PNO-Time Management

Table 5a. Significant relationship between TPACK and the endogenous variable

TRACK		R	eadiness to Teacl	h Online	
	DNK	KSK	PNO	TNK	Overall
KST	.419**	.375**	.377**	.347**	.447**
	.000	.000	.000	.000	.000
KSN	.428**	.411**	.374**	.343**	.458 ^{**}
	.000	.000	.000	.000	.000
KSP	.430**	.420**	.377**	.339**	.461**
	.000	.000	.000	.000	.000
KNP	.397**	.371**	.307**	.292**	.404**
	.000	.000	.000	.000	.000
KNT	.372**	.356**	.326**	.310**	.401**
	.000	.000	.000	.000	.000
KPP	.351**	.291 ^{**}	.296**	.254**	.352 **
	.000	.000	.000	.000	.000
KPT	.315**	.336**	.297**	.227**	.346**
	.000	.000	.000	.000	.000
Overall	.444	.420	.386	.349	.471**
	.000	.000	.000	.000	.000

Table 5b. Significant relationship between instructional competence and the readiness to teach online

Instructional	Readiness to Teach Online					
Competence	DNK	KSK	PNO	TNK	Overall	
KAN	.328**	.318**	.335**	.282**	.371**	
	.000	.000	.000	.000	.000	
KPN	.377**	.364**	.328**	.329**	.411 ^{**}	
	.000	.000	.000	.000	.000	
BAG	.443**	.362**	.329**	.381**	.447**	
	.000	.000	.000	.000	.000	
PUM	.497**	.422**	.390**	.458 ^{**}	.520 ^{**}	
	.000	.000	.000	.000	.000	
PSA	.506**	.424**	.375**	.408**	.505 ^{**}	
	.000	.000	.000	.000	.000	
PSA	.501**	.463**	.476**	.476**	.564 ^{**}	
	.000	.000	.000	.000	.000	
Overall	.566**	.504 ^{**}	.480**	.496**	.602**	
	.000	.000	.000	.000	.000	

Table 5c. Significant relationship between attitude toward internet use and readiness to teach online

Attitude Toward	Readiness to Teach Online					
Internet Use	DNK	KSK	PNO	TNK	Overall	
APD	.613**	.553**	.530**	.574**	.668**	
	.000	.000	.000	.000	.000	
APS	.622**	.545**	.512 ^{**}	.549 ^{**}	.657**	
	.000	.000	.000	.000	.000	
APK	.707**	.574**	.577**	.550 ^{**}	.711 ^{**}	
	.000	.000	.000	.000	.000	
Overall	.754 ^{**}	.648**	.628 ^{**}	.648 ^{**}	.790**	
	.000	.000	.000	.000	.000	

Table 6. Singular and combined influence of the exogenous variables on the readiness to teach online

Readiness to Teach Online							
Exogenous Variables		В	β	t	Sig.		
Constant		1.116	-	11.027	.000		
TRACK		.025	.042	1.092	.275		
Instructional Competence		.125	.142	3.268	.001		
Attitude Toward Internet Use		.596	.681	22.939	.000		
R	.802						
R^2	.643						
ΔR	.642						
F	402.526						
ρ	.000						

Table 7. Model best fits readiness to teach online

Model	P- value (>0.05)	CMIN / DF (0 <value<2)< th=""><th>GFI (>0.95)</th><th>CFI (>0.95)</th><th>NFI (>0.95)</th><th>TLI (>0.95)</th><th>RMSEA (<0.05)</th><th>P-close (>0.05)</th></value<2)<>	GFI (>0.95)	CFI (>0.95)	NFI (>0.95)	TLI (>0.95)	RMSEA (<0.05)	P-close (>0.05)
1	.000	14.224	.783	.800	.788	.772	.140	.000
2	.000	8.724	.821	.884	.872	.867	.107	.000
3	.000	7.727	.815	.899	.886	.884	.100	.000
4	.000	2.999	.956	.980	.971	.976	.054	.177
5	.063	1.333	.985	.997	.990	.996	.022	1.000

Legend: CMIN/DF - Chi-Square/Degrees of Freedom

GFI - Good Fit Index

RMSEA – Room Mean Square of Error Approximation

NFI - Normed Fit Index

TLI - Tucker Lewis Index

CFI – Comparative Fit Index

4. CONCLUSION

Teachers' levels of Technological Pedagogical Content Knowledge (TPACK) are relatively low compared to other variables, suggesting that they still need to be fully adept at employing technology in the classroom. The study proposes classroom inspections to performance and provide teachers with ongoing reinforcement and training on technology integration. However, instructors have a high level of instructional competence, indicating they have the abilities needed for subject delivery, lesson planning, and classroom management. Training in effective teaching techniques and content understanding is advised to improve instructional competency further.

Effective teaching strategies can be used to account for the significant association between TPACK, Instructional Competence, Attitude Towards Internet Use, and Readiness to Teach Online that was discovered by the study. Attitude toward Internet Use and Instructional

Competence impact teachers' preparation to teach online in college, even though TPACK has no direct effect. For teachers to be ready for online Teaching, TPACK integration into professional development programs is essential. For improving technical knowledge and applying content and instructional techniques, Siemens's connectivism theory is incredibly crucial.

Model 5 offered the greatest fit for the data based on consistent indices, suggesting that authorities should consider instructors' TPACK training and knowledge for updates in integrating technology into 21st-century teaching. To improve readiness for online teaching, it is also essential to assess teachers' attitudes toward internet use. In the Philippines, it is advised to conduct public additional research in schools emphasizing instructional proficiency, training, and integrating flexible or online education into the educational system. This synopsis emphasizes importance the of development ongoing professional and training for successful technology integration into teaching strategies.

CONSENT

As per international standard or university standard, respondents' written consent has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Junus K, Santoso HB, Putra PO, Gandhi A, Siswantining T. Lecturer readiness for online classes during the pandemic: A survey research. Education sciences. 2021 Mar 22;11(3):139.
- 2. Bolliger DU, Halupa C. Tech Trends. 2022;66(2):185-195.
- 3. Agapito JJ, Arcilla Jr FE, Bahian ME, Capala JO, Endriano RU. Readiness to teach online among Eastern Visayas State University Ormoc City Campus, Philippines faculty. SMCC Higher Education Research Journal (Multidisciplinary Journal). 2021;8(1):1.
- 4. Howard SK, Tondeur J, Siddiq F, Scherer R. Ready, set, go! Profiling teachers' readiness for online Teaching in secondary education. Technology, Pedagogy, and Education. 2021 Jan 1;30(1):141-58.
- 5. Toquero CM. Challenges and opportunities for higher education amid the COVID-19 pandemic: The Philippine context. Pedagogical Research. 2020;5(4):6.
- Mujallid A. Instructors' readiness to teach online: A review of TPACK standards in online professional development programs in higher education. International Journal of Learning, Teaching, and Educational Research. 2021;20(7):12.
- Basilaia G, Kvavadze D. Transition to online education in schools during a SARS-CoV-2 Coronavirus (COVID-19) pandemic in Georgia. Pedagogical Research. 2020;5(4):8.
- 8. Martin F, B Kiran, Wang C. Examining faculty perception of their readiness to teach online. Online Learning 2019; 23(3):97-119.
- 9. Khairi MA, Faridah I, Norsiah H, Zaki MA. Preliminary study on readiness to teach online due to the Covid-19 pandemic

- among university academicians in Malaysia. International Journal of Information and Education Technology. 2021 May;11(5):212-9.
- Benziman Y. Winning the battle and beating the COVID-19 enemy: Leaders use war frames to define the pandemic. Peace and Conflict: Journal of Peace Psychology. 2020;26(3):247.
- Santos JM, Castro RDR. Technological Pedagogical Content Knowledge (TPACK) in action: Application of learning in the classroom by pre-service teachers (PST). Social Sciences & Humanities Open. 2021;3(1):100110.
- Duke B, Harper G. Harper, Johnston M. Connectivism as a digital age learning theory. The International HETL Review 2013. Special Issue. 2013:4-13.
- 13. Batiibwe M, Kabuye S. Using cultural-historical activity theory to understand how emerging technologies can mediate teaching and learning in a mathematics classroom: A literature review. Research and Practice in Technology Enhanced Learning. 2019;14(1):1-20.
- Scherer R, Howard SK, Tondeur J, Siddiq F. Profiling teachers' readiness for online teaching and learning in higher education: Who's ready? Computers in human behavior. 2021 May 1;118:106675.
- 15. Baran E, Correia AP, Thompson A. Transforming online teaching practice: Critical analysis of the literature on the roles and competencies of online teachers. Distance Education. 2011;32(3):421-439.
- 16. Mezirow J. Transformative learning: Theory to practice. New Directions for Adult and continuing education. 1997; 1997(74):5-12.
- 17. Wang W, Schmidt-Crawford D, Jin Y. Preservice teachers' TPACK development: A literature review. Journal of Digital Learning in Teacher Education. 2018; 34(4):234-258.
- Garrison DR, Anderson T, Archer W. Critical inquiry in a text-based environment: Computer conferencing in higher education. The Internet and higher education. 1999;2(2-3):87-105.
- Bigatel PM, Ragan LC, Kennan S, May J, Redmond BF. The identification of competencies for online teaching success. Journal of Asynchronous Learning Networks. 2012 Jan;16(1):59-77.
- 20. Wichadee S. Factors related to faculty members' attitude and adoption of a

- learning management system. Turkish Online Journal of Educational Technology-TOJET. 2015;14(4):53-61.
- 21. Fishbein M, Ajzen I. Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric. 1977;(10.2):8.
- 22. Liu S, Liao H, Peng C. Applying the technology acceptance model and flow theory to online e-learning users' acceptance behavior. E-learning 2005;4.H6:H8.
- 23. Farahat T. Applying the technology acceptance model to online learning in egyptian universities. Procedia-Social and Behavioral Sciences. 2012;64: 95-104.
- 24. San Jose A, Concepcion MGR, San Jose B. Mothers as teachers: The new role of mothers in the new normal. Journal of Learning for Development. 2022;9(2): 351-362.
- Santos JM, Castro RDR. Technological pedagogical content knowledge (TPACK) in action: Application of learning in the classroom by pre-service teachers (PST). Social Sciences & Humanities Open. 2021;3(1):100110.
- Juanda A, Shidiq AS, Nasrudin D. Teacher learning management: Investigating biology teachers TPACK to conduct learning during the COVID-19 outbreak. Jurnal Pendidikan IPA Indonesia. 2021; 10(1):48-59.
- 27. Redmond P, Lock J. Secondary preservice teachers' perceptions of technological pedagogical content knowledge (TPACK): What do they think? Australasian Journal of Educational Technology. 2019;35(3).
- 28. Dalal M, Archambault L, Shelton C. Professional development for international teachers: Examining TPACK and technology integration decision making. Journal of Research on Technology in Education. 2017;49(3-4):117-133.
- 29. Schmid M, Brianza E, Petko D. Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans. Computers in Human Behavior. 2021;115:1-12.
- 30. Guerriero S. Teachers' pedagogical knowledge: What it is and how it functions. 2017:99-118.
- 31. Akyuz D. Measuring technological pedagogical content knowledge (TPACK)

- through performance assessment. Computers and Education. 2018;125: 212-225.
- 32. Smit R, Weitzel H, Blank R, Rietz F, Tardent J, Robin N. Interplay of secondary pre-service teacher content knowledge (CK), pedagogical content knowledge (PCK) and attitudes regarding scientific inquiry teaching within teacher training. Research in Science & Technological Education. 2017 Oct 2;35(4):477-99.
- 33. Kind V, Chan KKH. Resolving the amalgam: connecting pedagogical content knowledge, content knowledge, and pedagogical knowledge. International Journal of Science Education. 2019; 41(7):964-978.
- Yetti E, Syarah ES, Pramitasari M, Iasha V, Setiawan B. The Influence of Dance Instructional Strategy and Teacher's Pedagogy Competence on Classroom Climate. Ilkogretim Online. 2021 Jan 1;20(1).
- 35. Zhang R, Liu X, Tripp J, Shao B. Preservice science teachers' instructional design competence: Characteristics and correlations. Eurasia Journal of Mathematics, Science and Technology Education. 2017 Dec 23;14(3):1075-96.
- 36. Mezirow J. Transformative learning: Theory to practice. New Directions for Adult and Continuing Education. 1997; 1997(74):5-12.
- 37. Prasojo LD, Mukminin A, Habibi A, Hendra R, Iqroni D. Building quality education through integrating ICT in schools: Teachers' attitudes, perception, and barriers. Calitatea. 2019 Oct 1;20(172): 45-50.
- 38. Kaur M, Balwant S. Teachers' attitude and beliefs towards use of ICT in teaching and learning: Perspectives from India. Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. 2018: 592-596.
- Morze N, Kuzminska O, Mazorchuk M. Attitude to the digital learning environment in ukrainian universities. ICT in Education, Research, and Industrial Applications. Proc. 15th Int. Conf. ICTERI 2019. Volume II: Workshops. Vol. 2393. Zaporizhzhia National University Department of Computer Science. 2019;53-67.
- 40. Al Tooq Z, Cadiente D, Ligawen S, Mendaje JR. Readiness, challenges, and satisfaction in the new paradigm of

- teaching and learning: An E-learning evaluation. In 2020 Sixth International Conference on e-learning (conf) 2020 Dec 6;6-11. IEEE.
- 41. Çınar M, Ekici M, Demir O. A snapshot of the readiness for e-learning among inservice teachers prior to the pandemic-related transition to e-learning in Turkey. Teaching and Teacher Education. 2021;107:1-10.
- 42. Phan T, Ngoc T, Dang LTT. Teacher readiness for online teaching: A critical review. International Journal on Open and Distance e-Learning. 2017;3(1):1-16.
- 43. Ardiasih LS, Audi Yundayani. Teachers' readiness to online learning: A pedagogical perspective. ASEAN Journal of Open and Distance Learning. 2021;3(1):105-117.
- 44. Almazova N, Krylova E, Rubtsova A, Odinokaya M. Challenges and opportunities for russian higher education amid COVID-19: Teachers' perspective. Education Sciences. 2020 Dec 7;10(12):368.
- 45. Nenko Y. Teachers' readiness for distance education: From theory to practice. Suryanti, Sri, Deni Sutaji, and Toto Nusantara. An Assessment of Teachers' Readiness for Online Teaching. Journal of Physics: Conference Series. IOP Publishing. 2021;1933(1):152-160.
- 46. Koehler M, Mishra P. What is technological pedagogical content knowledge (TPACK)? Contemporary issues in technology and teacher education. 2009;9(1):60-70.
- 47. Bandura A. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review. 1977;84(2):191.
- 48. Van Wart M, Ni A, Rose L, McWeeney T, Worrell R. A literature review and model of online teaching effectiveness integrating concerns for learning achievement, student satisfaction, faculty satisfaction, and institutional results. Pan-Pacific Journal of Business Research. 2019 Apr 1;10(1): 1-22.
- 49. Paliwal M, Singh A. Teacher readiness for online teaching-learning during COVID- 19 outbreak: A study of indian institutions of higher education. Interactive Technology and Smart Education. 2021:403-421.
- 50. Aydin CH. Turkish mentors' perception of roles, competencies, and resources for online teaching. Turkish Online Journal of Distance Education. 2005;6(3):58-80.
- 51. Molise H, Dube B. Emergency online teaching in economic and management

- sciences necessitated by the COVID-19 pandemic: The need for healthy relations in a rural schooling context. International Journal of Learning, Teaching, and Educational Research. 2020;19(6): 387-400.
- 52. Aidoo B, Macdonald A, Gyampoh AO, Baah KA, Tsyawo J. Factors influencing teachers' online teaching competence in higher education. Social Education Research. 2022 Feb 21:148-60.
- 53. Rha K. Exploring english teachers' attitudes and perceptions of online classes: Based on the teachers' experiences. 2022;64:143-168.
- 54. Al-Abri AS, Al-Amin BM. Investigating the attitudes and practices of ELT teachers in UTASA towards professional development for online learning. Eurasian Journal of Educational Research. 2021;95:1-16.
- 55. Daumiller M, Rinas R, Hein J, Janke S, Dickhäuser O, Dresel M. Shifting from face-to-face to online teaching during COVID-19: The role of university faculty achievement goals for attitudes towards this sudden change, and their relevance for burnout/engagement and student evaluations of teaching quality. Computers in Human Behavior. 2021 May 1:118:106677.
- 56. Ajzen I, Fishbein M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin. 1977;84(5):888.
- 57. Fardhani I. Pre-service science teacher attitudes regarding post-pandemic online teaching and learning in Indonesia. AIP Conference Proceedings. AIP Publishing LLC. 2022;2600(1):15-25.
- 58. Blayone T. Reexamining digital-learning readiness in higher education: Positioning digital competencies as key factors and a profile application as a readiness tool. International Journal on E-Learning. 2018;17(4):425-451.
- 59. Yang H, Su C. Learner behavior in a MOOC practice-oriented course: In empirical study integrating TAM and TPB. International Review of Research in Open and Distributed Learning. 2017;18(5): 35-63.
- Ali W. Online and remote learning in higher education institutes: A necessity in light of COVID-19 pandemic. Higher education studies. 2020;10(3):16-25.
- 61. Bahar N, Wahab SN, Ahmad ND. Understanding challenges faced in online

- teaching and learning among malaysian universities' instructors during COVID-19 pandemic. 2020 Sixth International Conference on e-Learning (conf). IEEE. 2020:154-157.
- 62. Orhan G, Beyhan O. Teachers' perceptions and teaching experiences on distance education through synchronous video conferencing during COVID-19 pandemic. Social Sciences and Education Research Review. 2020;7(1):8-44.
- 63. Dexter S. Developing faculty EdTech instructional decision-making competence with principles for integrating EdTech. Educational technology research and development. 2023;1-17.
- 64. Fathi J, Ebadi S. Exploring EFL pre-service teachers' adoption of technology in a CALL program: obstacles, motivators, and maintenance. Education and Information Technologies. 2020;25:3897-3917.
- 65. Voithofer R, Nelson MJ, Han G, Caines A. Factors influencing TPACK adoption by US teacher educators. Educational Technology Research and Development. 2019 Dec;67:1427-53.
- 66. Meishar-Tal H, Levenberg A. In times of trouble: Higher education lecturers' emotional reaction to online instruction during COVID-19 outbreak. Education and Information Technologies. 2021;26(6): 7145-7161.

© 2023 Besa and Limpot; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/101729