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ABSTRACT 
 

The quality of groundwater and spring water in the Pala locality, influenced by both natural 
processes and human activities, is a major issue in the supply of drinking water to the city of Bobo 
Dioulasso. The geological context is mainly composed of Sotouba sandstone. This influences the 
chemical composition of the aquifers through water-rock interaction. This study examines the 
hydrogeochemical characteristics of the region's water resources in order to shed light on 
sustainable management strategies. For this fact, physico-chemical parameters of rainwater, and 
existing springs and boreholes were analysed in accordance with current standards. Statistical 
methods including correlation analysis, principal component analysis (PCA), factor analysis (FA) 
and hierarchical clustering (HCA) were used for interpretation. The results indicate that spring water 
is less mineralised than borehole water, which shows greater variability in physical and chemical 
parameters such as pH, electrical conductivity (EC) and turbidity. Major ions, dominated by 
bicarbonates and calcium, influence the main water facies, which are calcic bicarbonate and calcic 
and magnesian bicarbonate. Analysis of heavy metals reveals concentrations below WHO 
standards. The PCA identifies the dominant factors influencing water chemistry.  Factor analysis 
highlights the significant contributions of ions and the importance of understanding 
hydrogeochemical processes. At present, the spring and borehole water in the study area is fit for 
drinking in terms of physico-chemical properties and metals in the parameters analysed. 
Recommendations include the establishment of monitoring frameworks to protect water quality from 
potential sources of pollution, underlining the need for proactive management strategies in the 
region. 
 

 

Keywords: Hydrochemical; PC; HCA; FA; pollution; spring; groundwater. 
 

1. INTRODUCTION  
 

The quality of groundwater and surface water, 
influenced by a variety of natural and 
anthropogenic factors, is one of the most 
sensitive issues in the world. It is generally 
governed by the nature of geochemical 
reactions, the solubility of salts, the weathering of 
rocks, the speed and quantity of surface and 
groundwater flow, crystallisation by water 
evaporation and the input of atmospheric 
precipitation materials, and anthropogenic 
activities [1-5].  
 

The interaction between water, atmospheric 
carbon dioxide and continental rocks leads to the 
dissolution of minerals that are transported by 
surface water [6]. The quality of these waters is a 
critical factor influencing human health and agro-
pastoral production [7].  
 

Interactions between groundwater and surface 
water are fairly common in catchment areas 
[8,9]. It is therefore necessary to understand the 
relationship between groundwater and surface 
water as well as the mechanisms of 
mineralisation for better use and sustainable 

management of precious water resources, 
especially in arid and semi-arid zones [10,11]. 
The content of the main ions in water is widely 
used to identify the processes that control its 
mineralisation [3,12-24].  
 

Piper's trilinear diagram is a widely used tool for 
assessing hydrogeochemical types and               
quality control mechanisms in groundwater 
[16,25,26]. 
 

Statistical analysis (regression analysis, 
correlation coefficient) is used to establish the 
relationship between two variables, test 
significant hypotheses and study the distribution 
of the population [27-29].  
 

Chemometric analysis such as principal 
component analysis and hierarchical cluster 
analysis can help to reduce the number of 
chemical variables in a dataset to a small 
number without losing important information, and 
to divide a large dataset into clusters of similar 
characteristics [17,30-33]. 
 

These approaches are crucial for a more in-
depth understanding of the hydrogeochemical 
mechanisms and their controlling factors in 
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groundwater chemistry with a view to proactive 
management measures. These tools are 
therefore used in the present study. 
 

The city of Bobo Dioulasso is supplied with 
drinking water from spring exsurgences and 
boreholes, including those at Pala. The city's 
demographic explosion has led to its expansion 
and to strong pressure on these water resources. 
This is the case around the boreholes supplying 
drinking water to the Office National de l'Eau et 
de l'Assainissement (ONEA) in Pala, where 
housing, industry and agro-pastoral farms have 
sprung up. This poses a threat to the quality of 
the water that will be extracted [34]. 
Unfortunately, very few studies cover the 
catchment area. It is therefore necessary to 
determine the physico-chemical quality of the 
water and the processes that govern its 
mineralisation. It is with this in mind that this 
study was carried out. Its objectives were (a) to 
assess the quality of groundwater for domestic 
and industrial uses, (b) to identify the types of 
groundwater and the mechanisms that control 
groundwater chemistry, and (c) to determine the 
origin of the main springs. 

This comprehensive study fills a gap in      
knowledge of water resources and can serve as 
a data base for decision-making on sustainable 
groundwater management systems in the            
region. 

 
2. GEOGRAPHY AND GEOLOGICAL 

CONTEXT  
 
2.1 Geography of Study Area 
 
Our study area is located in the rural commune 
of Pala at the southeast entrance of Bobo 
Dioulasso, the second largest city in Burkina 
Faso (Fig. 1). The climate is of Sudanian type 
characterized by alternating dry and rainy 
seasons. Average temperatures range between 
25 and 31°C. The hottest months are October, 
March, and April, whereas August and December 
are the coldest. Potential evapotranspiration is 
significant, ranging between 1800 and 2150 
mm/year [35]. Topographically, it lies on the 
watershed line of two sub-basins of the  
Mouhoun River at an altitude of around 400 
meters. 

 

 
 

Fig. 1. Geological map 
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2.2 Geological Context 
 

From geological standpoint, Pala is part of the 
south eastern Taoudéni Sedimentary Basin (Fig. 
1) of the upper Precambrian to Palaeozoic age 
[36-38]. The local lithology is mainly composed of 
a mixture of sandstones, fine glauconitic 
sandstone (also known as Sotouba sandstone), 
sandstone with quartz grains, siltstones [39].  
 

Hydrogeological studies have indicated that the 
hydraulic gradient of the aquifers is relatively low 
(less than 0.3% in the east-west direction), and 
their transmissivity is about 3.10 10-4 m2/s [40]. 
Conversely, the permeability of these sandstone 
aquifers is high (1.8 10-6 m/s), and their storage 
coefficient is approximately 1 10-4 [41]. Overall, 
groundwater flows from north to south along 
numerous faults, facilitating the infiltration of 
rainwater into the aquifer. 
 

3. MATERIALS AND METHODS 
 

A total of 13 water samples, including one from 
rain, three from springs and nine from 
underground existing boreholes, were taken 
between 6 and 7 October 2022 (Fig. 2). It is 
important to note that there are not enough 
boreholes in the study area.  

To ensure that the borehole samples were 
indeed representative of groundwater and not of 
water that had been in the boreholes for some 
time, we put the boreholes into production for a 
few minutes (10-15 minutes) before the samples 
were taken. All of the samples were collected in 
1L polyethylene bottles and were acidified by 
chloride acid for the analysis. 
 
The physical parameters such as pH, 
Temperature, electrical conductivity (EC) and 
turbidity were measured in field under minimum 
atmospheric contact, using a calibrated meter. 
 
Majors cations and anions were analysed at the 
hydrochemistry laboratory SENEXEL in 
Ouagadougou/Burkina Faso by ion 
chromatography using standard procedures 
(American Public Health Association [42]. The 
other metallic elements such as Ba, CN-, As, Cd, 
Co, Cr, Cu, Hg, Ni, Pb, V and Zn were analysed 
using inductively coupled plasma mass 
spectrometry (ICP-MS). The analytical accuracy 
was cross-checked by calculating ionic balance 
error as follows (Eq. 1): 
 

IBE (%) = 
∑ 𝐶𝑎𝑡𝑖𝑜𝑛𝑠−∑ 𝐴𝑛𝑖𝑜𝑛𝑠

   ∑ 𝐶𝑎𝑡𝑖𝑜𝑛𝑠+∑ 𝐴𝑛𝑖𝑜𝑛𝑠
𝑥100               (1) 

 

 
 

Fig. 2. Geographical location of the groundwater and springs sampling sites and land 
occupation 
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Fig. 3. Ionic balance of major elements 
 
In general, the value of IBE should be less than ± 
5%, and certainly less than ± 10% [43]. In this 
study, all samples were IBE values less than ± 
5% (Fig. 3). 
 

To understand the chemistry of water samples, 
the approach is to study the statistical 
relationships between their dissolved 
constituents and environmental parameters, such 
as lithology, using multivariate statistics [44]. 
Multivariate statistical techniques which include 
HCA, FA and PC are effective means of 
manipulating, interpreting and representing data 
concerning groundwater pollutants and 
geochemistry [45-47]. 
 

4. RESULTS AND DISCUSSION 
 

4.1 Hydrochemical Characteristics 
 

4.1.1 Physico-chemical parameters 
 
The results of physical parameters measured in 
the groundwater samples are presented in Table 
1.  On the whole, spring water is less mineralised 
than groundwater.  Some values of physical and 
chemical parameters in borehole water vary 
considerably from one borehole to another. This 
is illustrated by the standard deviation                    
values, which are variables such as EC (194.65 
μS/cm), Turb (120 NTU) and HCO3- (135.37 
mg/L). 

The pH values were acid from groundwater 
indicate a variance of 5.1 to 5.6 in spring values, 
and from 5.62 to 6.62 in borehole. As for EC, it 
varied between 24.10 and 49.40 in springs, then 
9.90 and 611 in boreholes. These low pH and EC 
values agreed with those presented by [26,48,49] 
for groundwater samples from the Southwestern 
border of Taoudéni sedimentary sandstone 
aquifers. Turbidity value in 2 borehole and 1 
spring are higher than the recommended value of 
5 NTU (WHO 2008). Water turbidity is usually 
associated with suspended matter [50] and also 
indicates the growth of pathogenic 
microorganisms in water [51] because 
suspended particles can protect microbes. The 
higher values can be caused by clay, organic 
particles (decaying plants or animals), and 
inorganic particles by natural geological factors 
[52,53]. Acidic nature encourages rock-
groundwater interactions that result in increased 
water turbidity due to rock weathering [54]. The 
total hardness of the water from the springs and 
boreholes varies from 0.07 to 3°f, indicating that 
all the water is soft.  
 

4.1.2 Major ion chemistry 
 

The major cations (Ca2+, Mg2+, Na+ et K+) 
concentrations in spring water were low and 
were under WHO values. The low concentrations 
of base cations in spring water can be attributed 
not only to the short residence time of the 
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groundwater but also to the high resistance of 
the local bedrock, which is mainly sand, to 
chemical alteration [55]. In the borehole water, 
the main cations (Ca2+, Mg2+, Na+ et K+) have 
concentrations higher than those in the springs 
but also lower than WHO values, with the 
exception of potassium in two samples. 

 
We can therefore deduce that certain aquifers 
exploited by borehole have a longer residence 
time than that of springs. 

 
Anion concentrations are below WHO standards 
for both spring and borehole water. Thus, the 
overall order of abundance is HCO3

- > NO3
- > 

SO4
2- > Cl- in both spring and borehole waters. 

The nitrite ion (NO2
-) is also present but in very 

low concentrations. No water has a nitrate 
concentration higher than the World Health 
Organisation (WHO) standard of 50 mg/L. 
Ammonia (NH4+) is found in all the surface 
waters at very low and variable concentrations (0 
mg/L to 0.11 mg/L). Analysis of PO4

3- ions did not 
reveal any significant variations in content in the 
various waters. All waters have levels below 0.24 
mg/L. 

 
The representation of all the waters analysed on 
the Piper diagram (Fig. 4) shows a certain 
balance of cations, with the exception of 
borehole sample E2.  

In the anion triangle, the majority of waters are 
grouped in the bicarbonate pole, which belongs 
to groundwater. Spring waters tend towards the 
chloride + nitrate pole (dashed arrow). These 
waters have high nitrate levels, often associated 
with chloride, but well below the WHO standard 
for drinking water.  Borehole water is 
predominantly calcium bicarbonate, unlike spring 
water, which is calcium and magnesium 
bicarbonate. This predominance is confirmed by 
the Stiff diagram (Fig. 5).  

 
There is a strong correlation between the 
electrical conductivity of borehole water and 
bicarbonate content, with a coefficient of 
determination of 0.99 (Fig. 6).  

 
4.1.3 Heavy metal chemistry 

 
Concentrations of Al (<0.36 mg/L), Mn (<0.6 
mg/L), Ba (<0.4mg/L), CN- (<0.04mg/L) are very 
low and variable and well below WHO standards. 
Other metals such as As, Cd, Co, Cr, Cu, Hg, Ni, 
Pb, V and Zn were analysed, but their values 
were above the instrumental detection limits. FeT 
concentrations in the springs vary from 0.02 to 
0.45mg/L. This concentration decreases in the 
borehole water, ranging from 0 to 0.12 mg/L. 
Only the E9 sample has a FeT content above the 
WHO standard. This high level could be linked to 
anthropogenic pollution due to the presence of

 

 
 

Fig. 4. Piper’s Trilinear plot diagram on hydrochemical facies for the major ions of water 
samples 
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Table 1. The analytical value on the total hydrochemical parameters in the study area 
 

Type Springs Boreholes 

Variable Unit Min Max Number of 
samples >WHO 
2008 value 

Min Max Number of 
samples >WHO 
2008 value 

WHO (2008) 

pH  5.01 5.60 0 5.62 6.62 0 6.5-9.2 
EC μS/cm 24.10 49.40 0 9.90 611.00 0 400-500 
TAC meq/L 0.07 0.26 0 0.04 6.92 0 25 
TH mmol/L 0.09 0.12 0 0.03 3.03 0 50°f 
Turb NTU 1.50 6.98 0 0.39 344.40 2 5 
Ca++ mg/L 2.24 3.12 0 0.64 117.20 0 100 
Mg++ mg/L 0.77 1.06 0 0.38 10.90 0 200 
Na+ mg/L 0.36 2.82 0 0.43 4.77 0 200 
K+ mg/L 0.13 1.68 0 0.98 33.55 2 12 
FeT mg/L 0.02 0.45 1 0.00 0.12 0 0.3 
F- mg/L 0.00 0.16 0 0.00 0.17 0 1.5 
HCO3

- mg/L 4.27 15.86 0 2.68 422.12 3 100 
Cl- mg/L 0.80 1.20 0 0.60 1.20 0 250 
SO4

-- mg/L 0.00 1.00 0 0.00 5.00 0 250 
NO2

- mg/L 0.01 0.02 0 0.01 0.01 0 0.1 
NO3

- mg/L 6.10 7.60 0 2.60 6.50 0 45 
PO4

--- mg/L 0.03 0.04 0 0.03 0.24 0 0.5 
NH4

+ mg/L 0.00 0.11 0 0.00 0.16 0 0.4 
Al++ mg/L 0.04 0.36 --- 0.00 0.09 --- --- 
Ba mg/L 0.03 0.03 0 0.00 0.40 0 0.7 
Mn++ mg/L 0.00 0.02 0 0.00 0.60 2 0.4 
CN- μg/L 0.00 0.00 0.00 0.00 0.01 0.00 10 
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Fig. 5. Water classification on the Stiff diagram 
 

 
 

Fig. 6. Correlation between HCO3- content and EC 
 

potential pollution sources around the spring.  
According to [56], groundwater with an Fe 
concentration greater than 0.12 mg/L gives water 
an unpleasant metallic taste, and a concentration 
greater than 0.3 mg/L stains clothes. 
 

4.2 Statistical Analyze 
 
Correlation coefficient is commonly used to 
measure and establish the relationship between 
two variables. It is a simplified statistical tool to 

show the degree of dependency of one variable 
to the other. A negative r value indicates an 
inverse relationship and a positive r value 
indicates a direct relationship [57]. The results of 
Pearson’s correlation matrix in Table 2 show that 
the electrical conductivity has high correlations 
with K+ (r=0.97), HCO3

- (r=0.99), SO42- (r=0.82), 
Ba (r=0.77) indicating the contribution of major 
ions to the salinity of groundwater in the area. 
Other weak, moderate, and strong correlations 
have been established between different 
parameters. 
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For this analysis, only two principal components 
(PCs) with eigenvalues greater than 1 were 
retained, as suggested by the Kaiser criterion 
[58,59].  
 
PC1 represents 38.04% of the total variance 
within the data (Table 3); it shows positive 
weightings of all the variables. In particular, the 
highest weightings in PC1 are Ca2+, K+, HCO3

-, 
TAC, TH and electrical conductivity, which 
control mineralisation in this component, showing 
the dominance of these ions in water.  
 
CP2 accounts for 22.32% of the total variance in 
the data (Table 3); it is associated on the one 
hand with the negative weights of Mn2+, NO3

-, 
NO2

-, NH4
+ and F-, and on the other hand with 

positive weights for NO3
- even though the levels 

are below the WHO standard. The first two 
components account for approximately 60.36% 
of the variability in the data. 
 
Fig. 7 is a projection of the scores in PC1 and 
PC2 for all the water analyses, separated by the 
cluster to which they belong.  

Groups 1 and 3 are the only clusters with positive 
weightings in PC1 and correspond to the most 
mineralised clusters in the dataset. These two 
groups were very rich in HCO3

-, Ca2+ and K+. 
 
Conversely, group 2 samples have a negative 
weighting in PC1 and correspond to the                  
most recent groundwater. This is evidenced by 
their proximity to the rainwater sample in red 
(E1). 
 
As far as PC2 is concerned, group 1 shows 
positive weightings, these samples having a 
fluoride, nitrate and manganese character even 
though these levels are well below the WHO 
standard. 
 
Groups 2 and 3 only show negative weightings in 
PC2; group 2 samples are dominated by nitrate 
and have high concentrations of iron and 
aluminium (Table 4). Group 3 samples are 
dominated by HCO3

-, Ca2+ and K+. 
 
A clear differentiation between the scores of 
each group can be seen in Fig. 7, which shows 
no overlap, making it possible to define group 
zones (separated by black lines in Fig. 7) in the 
graph of scores.   

 

Table 2. Table of component weightings principal component Eigenvalues and variance of 
principal components 

 

  F1 F2 

TAC 0.9758 0.0128 
TH 0.9233 0.0687 
Turb 0.0086 0.1621 
CE 0.9756 0.0164 
pH 0.1254 0.1838 
Ca2+ 0.9242 0.0209 
Mg2+ 0.0962 0.0126 
Na+ 0.5359 0.0451 
K+ 0.9720 0.0002 
Fe 0.0259 0.0092 
F- 0.0417 0.7074 
HCO3

- 0.9798 0.0065 
Cl- 0.2247 0.3019 
SO4

2- 0.6631 0.0768 
NO2

- 0.0063 0.5437 
NO3

- 0.0109 0.7048 
PO4

3- 0.0235 0.0595 
NH4

+ 0.0666 0.6953 
Al2+ 0.0644 0.0715 
Ba 0.6974 0.1372 
Mn2+ 0.0261 0.8352 
CN- 0.0014 0.2396 
Eigenvalue 8.3689 4.9113 
Variability (%) 38.0405 22.3240 
Cumulative % 38.0405 60.3645 
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 Table 3. Pearson correlation for the physicochemical parameters for wet season samples 
 

Variables TAC TH Turb CE pH Ca2+ Mg2+ Na+ K+ Fe F- HCO3
- Cl- SO4

2- NO2
- NO3

- PO4
3- NH4

+ Al2+ Ba Mn2+ CN- 

TAC 1.00                                           
TH 0.99 1.00 

                    

Turb 0.00 -0.03 1.00 
                   

CE 1.00 0.99 0.00 1.00 
                  

pH 0.30 0.22 -0.09 0.28 1.00 
                 

Ca2+ 0.98 0.97 -0.06 0.97 0.25 1.00 
                

Mg2+ 0.32 0.32 0.11 0.34 0.22 0.12 1.00 
               

Na+ 0.67 0.63 0.60 0.68 0.10 0.65 0.10 1.00 
              

K+ 0.98 0.95 0.10 0.97 0.31 0.94 0.35 0.71 1.00 
             

Fe -0.16 -0.15 -0.11 -0.13 -0.19 -0.11 -0.28 0.22 -0.20 1.00 
            

F- 0.12 -0.03 -0.01 0.11 0.48 0.10 -0.04 0.13 0.16 -0.05 1.00 
           

HCO3
- 1.00 0.98 -0.01 1.00 0.31 0.98 0.32 0.67 0.98 -0.16 0.15 1.00 

          

Cl- 0.53 0.59 -0.34 0.56 -0.02 0.54 0.20 0.34 0.42 0.46 -0.24 0.52 1.00 
         

SO4
2- 0.81 0.83 -0.17 0.82 0.24 0.81 0.23 0.42 0.81 -0.16 0.07 0.80 0.46 1.00 

        

NO2
- -0.14 -0.27 -0.17 -0.14 0.42 -0.13 -0.20 -0.01 -0.14 0.33 0.86 -0.11 -0.09 -0.25 1.00 

       

NO3
- -0.02 0.11 -0.38 0.00 -0.36 0.04 -0.04 -0.14 -0.15 0.33 -0.68 -0.05 0.68 0.10 -0.43 1.00 

      

PO4
3- 0.21 0.22 -0.26 0.22 0.17 0.06 0.82 -0.23 0.17 -0.25 -0.04 0.21 0.15 0.17 -0.14 0.04 1.00 

     

NH4
+ 0.14 0.01 0.44 0.14 0.53 0.12 -0.08 0.57 0.20 0.24 0.72 0.17 -0.09 -0.06 0.72 -0.53 -0.31 1.00 

    

Al2+ -0.23 -0.20 -0.14 -0.20 -0.32 -0.19 -0.21 0.12 -0.29 0.95 -0.23 -0.24 0.51 -0.21 0.19 0.52 -0.14 0.08 1.00 
   

Ba 0.78 0.71 0.29 0.77 0.26 0.82 -0.11 0.80 0.81 -0.10 0.44 0.79 0.17 0.55 0.18 -0.36 -0.27 0.53 -0.25 1.00 
  

Mn2+ 0.04 -0.09 0.69 0.03 0.30 -0.02 0.04 0.49 0.14 -0.09 0.70 0.06 -0.43 -0.18 0.54 -0.75 -0.20 0.86 -0.22 0.49 1.00 
 

CN- -0.03 -0.14 -0.29 -0.04 0.15 -0.11 0.24 -0.19 -0.01 -0.05 0.63 0.00 -0.11 -0.26 0.65 -0.40 0.26 0.27 -0.12 0.05 0.30 1.00 
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Table 4. Principal Component Factor Analysis completed using the varimax rotation 
 

  F1 F2 F3 

TAC 0.9902 0.1133 0.0217 
TH 0.9637 0.2633 0.0193 
Turb 0.0939 -0.4168 -0.0548 
CE 0.9898 0.1278 0.0028 
pH 0.3260 -0.3731 0.1677 
Ca2+ 0.9633 0.1430 -0.0805 
Mg2+ 0.3081 0.1212 0.5067 
Na+ 0.7345 -0.2276 -0.4398 
K+ 0.9858 0.0143 0.0675 
Fe -0.1577 0.0859 -0.8590 
F- 0.2011 -0.8351 0.0248 
HCO3

- 0.9922 0.0809 0.0226 
Cl- 0.4686 0.5376 -0.4685 
SO4

2- 0.7893 0.2639 0.0640 
NO2

- -0.0807 -0.7348 -0.3010 
NO3

- -0.1008 0.8082 -0.3322 
PO4

3- 0.1491 0.2486 0.5282 
NH4

+ 0.2552 -0.8349 -0.3705 
Al2+ -0.2526 0.2607 -0.8525 
Ba 0.8340 -0.3787 -0.1875 
Mn2+ 0.1613 -0.9273 -0.0399 
CN- -0.0363 -0.4427 0.1699 
Eigenvalue 8.3254 4.8014 2.8753 
Variability (%) 37.8428 21.8246 13.0695 
Cumulative % 37.8428 59.6674 72.7369 

 

 
 

Fig. 7. Scores in PC1 and PC2 for all the water analyses 
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4.2.2 Hierarchical cluster analysis 
 
HCA is used to classify waters into objective 
groups. Sample classification into clusters was 
based on dendrogram visual analysis by drawing 
the phenon line, and changing the location of the 
phenon line on the dendrogram changed the 
number of clusters. A subjective evaluation was 
made choosing the horizontal line (phenon line) 
[32,60-62] across a dendrogram at a linkage 
distance of about 35% (Fig. 8) based on its visual 
examination to obtain three clusters (main 
groups) as it was resulted from the PCA.  
 
Cluster 1 is that of water enriched in NH4

+ a and 
Na+. Cluster 2 consists of water whose 
mineralization is controlled by the infiltration of 
surface water, hence the presence of nitrates. 
Cluster 3 is that of hard water rich in major Ca2+, 
Mg2+, HCO3

- having acquired their mineralisation 
following a more or less long residence time in 
the surrounding soils. The cations Ca2+ and Mg2+ 
indicate the hardness (TH) of these waters, while 
HCO3

- indicates alkalinity (Fig. 8). 
 

4.2.3 Factor analysis (FA) rotate 
 

To understand the hydrogeochemical processes 
responsible for the observed hydrochemical data 
of the water samples, factor analysis was carried 
out on the selected hydrochemical variables. 

Table 3 shows the results of the Principal 
Component Factor Analysis completed using the 
varimax rotation method in order to maximize the 
variance. To improve interpretations, a ‘’strong” 
loading was defined as >0.75, a “moderate” 
loading from 0.50 to 0.75 and loadings <0.5 were 
considered “weak” and they were omitted from 
being reported and interpreted. 
 

Table 3 listed the eigenvalues of the first three 
factors, their percentage of variance and 
cumulative percentage of variance. It revealed 
that the eigenvalues of the three factors, which 
exceed one, explain 72.73% of the total variance. 
It’s indicating the saturation of the quartimax-
rotative factor matrix for the three-factor model. 
Absolute values of factor loadings greater than 
0.7 were considered a strong correlation and 
marked in bold to elucidate the relationships 
between the factors and the hydrochemical data. 
 

Factor 1, which explains 37.84% of the total 
variance, has strong positive loadings on TAC, 
TH, EC, Ca2+, Na+, K+, HCO3

2-, SO4
2- and Ba. To 

compare with data on hydrochemical parameters 
(Table 1) Ca2+, Na+, K+, HCO3

2- and SO4
2- items 

are the dominant solutes in groundwaters. This 
factor highlights the degree of mineralisation of 
the water by acid hydrolysis of the minerals 
during the contact time of the meteoric water with 
the surrounding rock. 

 

 
 

Fig. 8. Dendrogram of HCA for water quality parameters 
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Factor 2 explains 21.82% of the total variance 
with strong negative loadings on F-, NO2

-, NH4
+, 

Mn2+, and strong positive one NO3
-. To compare 

with hydrochemical data on Table 1, NO3
- item is 

the dominant solutes in spring waters. The 

circulation of pollutant-laden meteoric water in 
contact with the spring water results in a high 
concentration of NO3

- ions in the spring water. 
This factor therefore reflects the mineralisation of 
water by rainfall. 

 

 
 

Fig. 9. Observation of individuals after using varimax rotation 
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Fig. 10. Dumping of domestic wastewater (a), septic tank sludge (b) and solid waste (c) around 
springs and boreholes 

 
Factor 3 explains 13.06% of the total variance 
with strong negative loadings on Fe and Al2+. It 
reflects the mineralisation of well water through 
redox. 
 
The observation of individuals after using 
varimax rotation confirms the division of water 
into three groups as obtained with the ACP (Fig. 
9). 
 

4.3 Environmental Survey 
 
However, human activities produce waste that 
can adversely affect the physical and chemical 
quality of the water. These include agro-pastoral 
activities, uncontrolled dumps and the dumping 
of septic tank sludge into the environment (Fig. 
10). 
 

5. CONCLUSION 
 
The hydrochemical analysis revealed that 
geological processes have played a significant 
role in attributing the ionic character to the 
groundwater in the study area. The analysis 
methods used have enabled us to understand 
the nature of the water and the physical and 
chemical processes that govern its 
mineralisation. Spring water comes from the 
geological formation of fine glauconitic 
sandstone. However, anthropogenic activities 
have not yet had a significant negative impact on 
groundwater. It is important to note that 
anthropogenic activities are potential sources of 
pollution that could have an impact on 

groundwater quality in the long term. The same 
applies to some shallow boreholes. Others 
exploit only the deeper aquifers known as the 
Kawara Sindou sandstone. ONEA's boreholes 
exploit the two superimposed aquifers. It is 
recommended that a piezometric belt be set up 
around the catchment area to monitor quality at 
regular intervals, depending on potential sources 
of pollution. 
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