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Abstract 
 

This paper introduces a generalized Suja distribution called the Kumaraswamy-Suja (KW-Suja) distribution 

using the Kumaraswamy generator. The proposed distribution has Suja distribution as a special case. Some 

statistical and reliability properties of the new distribution were derived and the method of maximum likelihood 

was employed for estimating the model parameters. The usefulness and flexibility of the KW-Suja distribution 

were illustrated with a real lifetime data. Results based on the log-likelihood and goodness of fit statistics values 

showed that the KW-Suja distribution provides a better fit to the data than the other competing distributions 

considered in this study. The KW-Suja distribution is therefore recommended for effective modelling of the 

unimodal or bimodal continuous lifetime data with non-decreasing shape and bathtub-shaped failure rate. 
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1 Introduction 
 

One of the activities of statisticians is to make informed decisions about a population on the basis of sample drawn 

from that population. Obviously, several phenomena upon which decisions are taken often occur by chance and 

the best way to account for uncertainties surrounding them is to adopt probabilistic models. Probability models 

serve as mathematical structures for describing physical phenomena. A necessary step in the use of probabilistic 

models for modelling real-life problems is to ensure that the observed sample data follow certain probability 

distribution(s). Standard probability distributions commonly used for modelling several real-life problems include 

exponential, Weibull, gamma, two-parameter Odoma by Enogwe et al., [1], Beta-Exponentiated Ishita due to 

Enogwe and Ibeh, [2], Inverse Power Akash by Engowe et al., [3], Generalized Weighted Rama developed by 

Enogwe et al., [4], Enogwe et al., [5] and so on. Unfortunately, so many datasets do not come from the existing 

probability distributions and this has engendered a demand for alternative distributions, especially for the 

extension of the existing distributions which can be more appropriate for fitting real-life data. 

 

Recently, Shanker [6] introduced and studied a new distribution, called the Suja distribution (SD) with probability 

density function (pdf) and cumulative distribution function(cdf) given, respectively, by 
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The parameter   in (1) and (2) is a scale parameter. Shanker [6] utilised the Suja distribution for lifetime analysis 

of engineering data and the findings showed that the Suja distribution performed better than the Akash, Shanker, 

Amarendra, Aradhana, Sujatha, Devya, Lindley and exponential distributions, respectively. 

 

In spite of the utility of the Suja distribution, it cannot be used for statistical modelling of datasets with varieties 

of tails due its dependency on only one parameter. This limitation of the Suja distribution can be overcome by 

obtaining some of its generalizations so as to provide greater flexibility in modelling observed data Terzieva et 

al., [7]. The work of Al-Omari and Alsmairan [8] introduced a length-biased Suja distribution. Also, a power 

length-biased Suja distribution was developed by Al-Omari et al. [9]. Further, Alsmairan and Al-Omari [10] used 

the weighted method to extend the Suja distribution, which was applied to ball bearing data to show that weighted 

Suja is better than Suja distribution. The limitation of these extensions of Suja distribution is that they cannot be 

used to model data with right-skewed and bimodal shape. However, Enogwe et al. [11] introduced a transmuted 

Suja distribution for modelling data with bimodal shape. 

 

In recent years, many methods have been proposed and utilized for generating new probability distributions; 

among them is the Kumaraswamy distribution proposed by Kumaraswamy [12]. Jones [13] explored the 

background and genesis of the Kumaraswamy distribution and mentioned that the Kumaraswamy densities are 

unimodal, uniantimodal, increasing, decreasing or constant depending on the values of its parameters. In other 

words, Jones [13] posits that the Kumaraswamy distribution provides distributions that are more flexible than 

baseline distributions in modelling real-life datasets. Further, Cordeiro and de Castro [14] combined the works of 

Eugene et al. [15] and Jones [12] to construct a new class of Kumaraswamy generalized (Kw-G) distributions. 

The cumulative distribution function (cdf) and probability density function (PDF) of the of the Kumaraswamy 

generalized distributions (KW-G) is given by  
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respectively, where 0 1x  , 0  , 0   are shape parameters, ( )xG  is the baseline pdf of X  and 

( ) ( ) dxxdGxg = , the baseline pdf of X . Observe from (3) and (4) that when 1 = = , the Kumaraswamy 

family of distributions reduces to the baseline distribution. 

 

Several generalized distributions from (3) and (4) have been studied in the literature including Kumaraswamy 

generalized family of distributions for positively skewed data developed by Cordeiro et al., [16], KW-Weibull 

distribution due to Cordeiro et al., [17], KW-Gumbel by Cordeiro, et al., [18], Kw-generalized gamma distribution 

by de Castro et al., [19], KW-Birnbaum-Saunders due to Saulo et al. [20], the KW-generalized half-normal 

distribution by Cordeiro et al., [21], due to KW-Pareto distribution, Bourguignon et al., [22], Exponentiated 

Kumaraswamy  distribution by Lemonte et al., [23], Kumaraswamy Marshall-Olkin  Lindley  distribution due to 

Mansour et al., [24], Kumaraswamy log-logistic Weibull distribution by Mdlongwa et al., [25], Kumaraswamy-

Rani distribution by Mouna  [26], exponentiated Kumaraswamy exponential distribution  by Rodrigues and Silva 

[27], Kumaraswamy-Sushila distribution by Shawki and Elgarhy [28], Kumaraswamy half-logistic distribution. 

by Usman et al., [29] among others. 

The aim of this article is to propose a Kumaraswamy Suja (KW-Suja) distribution, which is more flexible than 

the Suja distribution and some other competing lifetime distributions in modelling complex lifetime datasets. 

Specifically, this study reveals that the Kumaraswamy generator can be used to generalize a one-parameter 

continuous distribution to obtain a bimodal two-parameter distribution that has a monotone or non-monotone 

hazard rate function, especially the bathtub shape. In Section 2, we define the expressions for the pdf and cdf of 

the KW-Suja distribution. The statistical and reliability properties of the KW-Suja distribution are discussed in 

Section 3. The quantile function and entropies of the KW-Suja distribution are given in Section 4. Section 5 

Provides the distribution of order statistics. In Section 6, the parameters of the KW-Suja distribution are estimated 

through the method of maximum likelihood estimation. Section 7 discusses the asymptotic confidence intervals 

of the parameters of KW-Suja distribution. A simulation study is conducted in Section 8. In Section 9, two real 

datasets, methods of model selection, applications of the KW-Suja distribution to the data sets and the results are 

presented. In Section 10, we give the concluding remarks. 

 

2 The KW-Suja Distribution 
 

Inserting (2) into (3), we get the cdf of the new distribution. Also, inserting (1) and (2) into (4), we obtain the pdf 

of the new distribution. Consequently, a random variable X  is said to have the KW-Suja distribution if its cdf 

and pdf are defined as 
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respectively, for , , 0, 0 1x      . The KW-Suja distribution reduces to the Suja distribution when 

1 = = . 
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Fig. 1 shows the plots of the pdf of the KW-Suja variable based on several sets of values of the parameters of the 

distribution. As can be seen in Fig. 1, the KW-Suja has both unimodal, heavy-tailed and upside-down bathtub 

shapes.  

 
 

Fig. 1. Various shapes of the pdf of KW-Suja for some parameter values 

  

2.1 Expansions for the cumulative and density functions 
 

In this sub-section, simple expansions for the KW-Suja cumulative distribution as well as that of its density 

function are given. By using the generalized binomial theorem (for  0 1  ), we have 
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From (3), we can write 
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Putting (8) into (5) gives 
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Also, from (9), we get  
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Putting (10) into (9) yields 
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On putting (12) into (11), we obtain 
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3 Statistical and Reliability Properties of KW-Suja Distribution 
 

3.1 Statistical properties 
 

In line with Enogwe and Ibeh [2] the rth non-central moment of KW-Suja distribution is given by 
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According to Enogwe et al. [1] the rth central moment of KW-Suja distribution can be obtained from the relation 
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The coefficient of variation ( )0
 , skewness ( )1

  and kurtosis ( )2
  of the KW-Suja distribution could be 

obtained by evaluating 
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Following the work of Enogwe et al. [10] the moment generating function of KW-Suja distribution is defined as 
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3.2 Reliability properties 
 

The survival function of the KW-Suja distribution is given by 
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The hazard function of the KW-Suja distribution is given by 
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The graph of the survival and hazard rate functions of the KW-Suja are shown in Figs. 2 and 3 respectively. 

 

 
 

Fig. 2. The Survival function the KW-Suja distribution for different values of its parameters 
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Fig. 3. Various shapes of the Hazard Function of the KW-Suja distribution 

 

4 Quantile Function and Entropy Measures of KW-Suja Distribution 
 

4.1 Quantile function of the KW-Suja distribution 
 

The 
x  quantile function of the KW-Suja distribution satisfies the equation 
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Plugging (3) into (26), we have 
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Therefore, the thq quantile, denoted by q
x , for KW-Suja distribution, is a positive solution of (28), which can 

be found by numerical method. 
 

4.2 Entropy measures of the KW-Suja distribution 
 

The Rényi entropy may be defined for the KW-Suja distribution as 
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Applying binomial expansion to the terms in (29) and simplifying, one gets 
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5 Distributions of Order Statistics of KW-Suja Distribution 
 

The pdf of the rth order statistic for KW-Suja distribution is given by 
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6 Maximum Likelihood Estimates of Parameters of the KW-Suja 

Distribution 
 

Consider a random sample 
n

XXX ,...,,
21

drawn from a KW-Suja distribution. Obviously, the likelihood 

function of the random sample is 
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The log-likelihood function is  
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Taking the partial derivatives of (34) with respect to   and  , and equating the results to zero, yields 
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Due to the complex nature of (35), (36) and (37), an iterative method such as the Newton-Raphson method is 

adopted for finding its solution.  

 

7 Application to Real Data Set 
 

In this section, we illustrate the flexibility and applicability of the BES distribution with two real data sets. The 

data comprises of the sum of skin folds in 202 athletes collected at Australian Institute of sports and were used by 

Weisberg [30]. 

 

28.0, 98.0, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 131.9, 

68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4,    83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 80.3, 91.0, 

156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 

87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48 .3, 

32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67.0, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 62.6, 41.1, 58.9, 

60.2, 43.0, 32.6, 48.0, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 76.8, 99.8, 80.1, 

57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8, 49.5, 

90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 

55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 

54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9 

 

The goodness of fit of the new lifetime distribution would be assessed by means of comparing its fitting 

performance with those of 

 

(1) Pareto (Type I) distribution (PD) presented in Amoroso [31] 
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(2) Lindley distribution (LD) by Ghitney et al., [32] 
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Comparison of the fitted models would be based on the following goodness of fit measures:  

 

the Akaike information criterion (AIC) due to Akaike [33], given by 

  2 2AIC l k= − + ,                      (44) 

 

the Bayesian information criterion (BIC) due to Schwarz [34], given by 
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  ( )ln 2BIC k n l= − ,                      (45) 

 

where k  is the number of parameters in the KW-Suja distribution l  is the maximized value of the log-likelihood 

function of the KW-Suja distribution, ( )ˆ
i

F x  is the value of the cdf of the KW-Suja distribution and n  is the 

sample size.  

A distribution is said to provide the best fit to the data if among all the distributions under consideration, it 

corresponds to minimum values of AIC, BIC and the log-likelihood respectively.  The maximum likelihood 

estimates with the standard error of the fitted models, the log-likelihood, the corresponding model selection 

criteria, the goodness-of-fit statistic and p-value results are displayed in Table 1. It is evident that the KW-Suja 

distribution has the smallest AIC, BIC and log-likelihood values among all competing models, and so it could be 

chosen as the best model among all the distributions which have been fitted to the real dataset. 

Table 1. Maximum likelihood estimates of parameters of the KW-Suja distribution, the standard error of 

estimates, log-likelihood, model selection criteria, goodness-of-fit statistic and p-value 

 

Models  Estimates   SE   AIC BIC KS P-value 

KW-SD 
=0.0769 



=0.0116 

 = 0.2430 

0.0769 

0.0116 

0.0025 

948.957 1903.914 1913.839 0.0661 0.3261 

SD  = 0.2430 0.0123 962.3421 1932.919 1943.211 0.0532 0.4213 

LD  = 0.2859 0.0014 1001.743 2005.486 2008.795 0.2154 0.0508 

PD 
=0.0580 

0.0020 965.7686 1933.537 1936.846 0.0918 0.0621 

 

8 Conclusion 
 

This paper introduces a new lifetime distribution, called the Kumaraswamy Suja distribution, which generalizes 

the Suja distribution. We have provided explicit mathematical expressions for some of its basic statistical 

properties such as the probability density function, cumulative density function, rth crude and central moments, 

variance, coefficient of variation, skewness, kurtosis, and quantile function and some reliability characteristics 

like the reliability, hazard rate, cumulative hazard and reverse hazard functions. Rényi entropy was discussed. 

Also, the distributions of rth, first and largest order statistics were introduced. Estimation of the model parameters 

was approached through the method of maximum likelihood estimates. The flexibility and applicability of the 

new lifetime distribution was illustrated with a real data and the results obtained revealed that the Kumaraswamy 

Suja distribution provides the best fit among all the compared related distributions. The Kumaraswamy Suja 

distribution is recommended for modelling unimodal or bimodal continuous lifetime data with a non-decreasing 

shape and bathtub shaped hazard rate function and hope that it would receive significant applications in the future.  
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