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Abstract: The "angle trisection-halting problem" impossibility analogy is fundamentally based on the obscure
perception that; the classical geometric notion of constructability in Euclidean plane geometry corresponds
to the modern theory of computability. Specifically, the difficulty of empirical trisectability of any angle
has been viewed as analogous to the impossibility of solving the halting problem. The primary goal of
this paper is to establish the inherent incompatibility between the geometric trisectioning of angles and
the halting problem. The exposed proof concern the genetic solutions methodic characterization of the
inconsistencies between the angle trisection problem and the halting problem. We show that regarding their
attempts at solutions, the genetic trisectability of an arbitrary angle leads to solving the halting problem in
geometric cryptographic schemes. It is upon the characteristic inconsistencies that we establish a provable
refute of the validity of considering the practical applications of geometric cryptography as a solid source for
cryptographic principles.

Keywords: Geometric cryptography; Halting problem; Angle trisection; Computability; Classical geometry;
Turing machine; Elliptic curve cryptography.

1. Introduction

E ncryption is the technique of encoding messages (information) to prevent eavesdroppers or hackers from
decrypting them but allowing authorized parties to do so. The message or information (commonly

referred to as plaintext) is encrypted using an encryption technique, resulting in the unreadable ciphertext.
Several cryptography techniques exist; including the geometric cryptographic schemes [1,2].

Based on the symmetric cryptography algorithm used to encrypt input data, this paper establishes the
incompatibility between the geometric trisectioning of angles and the halting problem in recursion theory. We
will in specific, focus on a form of a cryptographic technique called symmetric encryption. In this method,
a similar key is utilized for both encryption and decryption procedures, and it is shared between the two
communicating parties. It is a technique in which the information source encodes the plaintext and sends the
ciphertext to the recipient using the key (or some set of restrictions). To decode the message and recover the
plaintext, the receiver uses the same key (a set of predetermined rules). As a result, it is a type of cryptography
in which both the information source and the recipient must know the key [3]. We will then employ the
developed workflow for generalized geometric cryptographic schemes.

The "angles trisection-halting problem impossibility" analogy has been employed as a handy genetic
example of symmetric encryption systems. The "angles trisection impossibility-halting problem impossibility"
analogy is a geometric encryption method in which communications and ciphertexts are geometrically
represented by angles or intervals of other geometric quantities (that may represent angles such as curves
or straight-line segments). Computations are genetically based on straightedge and compass construction
rules in this method [4]. The difficulty and impossibility assertions associated with solving some geometric
problems, such as the trisection of an arbitrary angle using a straightedge and compass operations, serve
as the foundation for the many geometric cryptography schemes [1,5]. Across the cryptographic historical
frameworks, the first geometric cryptographic scheme was presented by [3], and the field has seen consistent
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growth in scientific research for decades [6]. Even though cryptography methods based on the plane Euclidean
geometry system have practically limited physical applications (the geometric cryptographic schemes do
not concern the classical straightedge and compass constructions), they are mostly utilized as pedagogic
machinery for explaining more advanced cryptographic protocols [3,6].

The focus of this paper is to show that although the "angles trisectability-halting problem" impossibility
analogy has frequently been utilized in the design of cryptographic techniques, its fundamental building
blocks are geometrically misconstructed and it provides a weak framework for the application in
cryptographic pedagogies and practices. We investigate the genetic characteristics of the two problems, the
trisection of an arbitrary angle and the halting problem (based on the symmetric encryption method), and
show the characteristic contrasts between the two problems in demonstrating their inherent incompatibility.
Furthermore, we believe that for one to break the "angle trisectioning-halting problem" impossibility scheme;
any such assertions should objectively be based on either, having sought the trisection of an arbitrary angle,
or, by solving the halting problem or solving both of the problems. In this case, we use the "AG-Algorithm" [7]
approach, which, when combined with the genetic definition of the two problems, invalidates the geometric
cryptography analogy.

The rest of the paper’s workflow is organized as follows: §2 deals with halting problem characterization,
§3 concerns the angle trisection problem characterization, §4 deals with the characterization of the "angle
trisection impossibility-halting problem" analogy and its limitations, §5 provides detailed discussions of the
developed issues though the paper, and, §6 concludes the workflow.

2. Characterization of the Halting Problem

The halting problem is a decision problem in which you must determine if a computer program will
eventually halt when run with the provided input given a computer program and an input to the program. The
halting problem is a conceptual model in which there is no memory or time constraint on program execution,
and so it can take an arbitrary amount of time and use a large amount of system storage space before halting.

In pseudo-code, for example, a program may run indefinitely in an infinite loop or may come to a halt
relatively quickly. As a result, the halting problem has been determined to be algorithmically unsolvable [3,8].
This means that no method can be applied randomly to a program as input to determine if it will stop when
run with a specific input. A generic technique to solve the halting problem for all potential program-input sets
cannot exist, according to the Turing machine [3]. Turing machines are abstract computational devices that
have been presented objectively to aid in examining the breadth and limitations of computational capabilities.
Turing machines are the most powerful computational machines, and they form the theoretical basis for
modern computers [8,9]. The next §2.1 presents a common understanding of the halting problem’s operational
principles.

2.1. A characteristic proof of the Halting impossibility

We set a straightforward interpretation of the problem as, given a random Turing machine M over the
expression Σ = {x, y}, and a random string w over Σ, does M halt when it is given w as an input? The goal of
this section is to characterize and show that the halting problem is not decidable, hence unsolvable.

Claim 1. The halting problem is undecidable and hence, unsolvable.

A Contradiction Assertion [10]: We establish an elementary proof by contradiction. We suppose that the
halting problem is decidable, implying that there is a Turing machine operational named TM that solves the
halting problem. That is, given a description of a Turing machine M (expressible over Σ) and a string w, TM
writes "True" if M halts on w and "False" if M does not halt on w, and then TM halts. Consider Figure 1;
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Figure 1. Basic Working Mechanism of Turing Machine

Let us now build the new Turing machine TMa shown in Figure 2. First, we create a Turing machine TMm

by adjusting the TM depicted in Figure 1 so that if TM accepts a string and halts, then TMm goes into an infinite
loop (TMm halts if the original TM rejects a string and halts).

Figure 2. Basic Working Mechanism of Turing Machine

Then following (Figure 2 (TMm )) we create another Turing machine TMa scheme shown in Figure 3 as:
recall that a TMa takes as input a description of a Turing machine TM expressed by d(M), copies it to acquire the
string d(M) ∗ d(M), where ∗ is a symbol that separates the two copies of d(M) and then supplies d(M) ∗ d(M)

to the Turing machine TMm .

Figure 3. Finite State Machine as a Turing Machine

We examine how TMm operates when provided with a string describing TMm itself is given as input.
Considerably, when TMm gets the input d(TMm ), it makes a copy, constructs the string d(TMm) ∗ d(TMm) and
gives it to the revised TM. Thus the modified TM is described as the Turing machine TMm and the string d(TMm )
as depicted in Figure 4.

Figure 4. Genetic Characteristics of Turing Machine

From Figure 2, the modified TM would execute an infinite loop if TMa halts on d(TMa ), and on the opposite,
it halts if TMa does not halt on d(TMa ). In other terms, TMa goes into an infinite loop if TMa halts on d(TMa ) and
it halts if TMa does not halt on d(TMa ). This is a contradiction. The contradiction has been assumed from the
hypothesis that there is a Turing machine that solves the halting problem. Hence such a supposition must be
wrong. The following pseudo-proof is aimed at clarifying the described hypothesis.
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Elaborate Proof: The aim here is to establish an operational model fleshing out the exposed halting
impossibility characteristic proof. We start by assuming that the halting problem is solvable, which implies
that a solution algorithm exists. [6] states that a program X can be written as input to any program P with data
D, and the program will determine whether P initiated on D ultimately halts. To make a new program Y, we
append some commands (strictly, mathematical expressions) to X. We let Y modify Xs so that if X halts due to
a decision that P started on D halts, Y goes into an infinite loop.

If X comes to a halt with the decision that P initiated on D, then Y comes to a halt as well. Finally, we
make a new program called Z with the input P. Z is defined so that it raises Y on program P with an input
corresponding to P (that is, the input data for Z is a program). There are two probable prospects for explaining
what happens when we run Z on Z.

1. [6] Z started on input Z halts: If Z run on Z halts, then Y run on Z with input Z halts. If Y executed on Z
with input Z halts, then X decided that Z started on Z never halts! Therefore, Z started on input Z halts
implying that Z executed on input Z does not halt. This is a contradiction.

2. Z started on input Z does not halt: If Z executed on Z does not halt, then Y run on Z with input Z does
not halt. If Y run on Z with input Z does not halt, then X decided that Z started on Z halts! Therefore, Z
run on input Z never halts implying that Z started on input Z halts. This leads to a contradiction again.

Either alternative yields a contradiction, so the assumption that the halting problem is solvable must be
incorrect.

2.1.1. A genetic empirical characterization of the Halting problem

This section presents both the genetic and the physical characteristics of the halting problem by examining
the relationship between Turing Machines and modern-day general-purpose computers. In specific, we will
be focusing on the machinery functioning frameworks. A Turing Machine is similar to a general-purpose
computer in the following ways:

a) A Turing machine is made up of a "tape" of cells and a single active cell called the "head". The tape’s
cells can be any color, and the head can be in any condition. A rule specifies what the head should do at
each step for each Turing machine. The rule considers the state of the head as well as the color of the cell
in which the head is located. Then it describes what the head’s new state should be, the color it should
"write" into the tape, and the direction it should move in (either to the left or to the right). The initial
color arrangement of cells on the tape corresponds to the computer’s input. Both "program" and "data"
can be included in this input. The Turing machine’s steps correlate to the computer’s operation.

b) The Turing machine’s rules are analogous to computer machine-code instructions. Each section of
the rule indicates what "operation" the computer should execute in response to a specific input.
Turing Machines are distinguished from modern general-purpose computers by their storage capacities.
However, because Turing machines have unlimited storage, we investigate the technical notion that the
general-purpose computer is closer to a "finite state machine (FSM)" than a Turing machine, based on the
proven characteristic similarities between the two machines. The presence of micro-transistors, which
comprise the computer’s major functional components, including computer memory, is important to the
computer as an FSM.

2.1.2. Functional characterization of computer Halting operations

As mentioned in the previous section, general-purpose computers are fundamentally binary systems
whose functioning principle is based on the working mechanisms of the constituent micro-transistors. All
information in a computer is conveniently binary coded (both numerical data and text data are binary-coded).

The general-purpose computers use the micro-transistors states of either "High (True)" or "Low (False)"
which genetically correspond to the binaries "1" or "0" respectively, in controlling the events between the
background of the computer and the physical world. For instance;

i) in a color image, every pixel is represented by three binary sequences that correspond to the three-pixel
primary colors (green, red, and blue). Each sequence encodes an expression (could be mainly numerical
valued expressions) that represents the intensity of the corresponding particular color in the pixel. These
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sequences are then transmitted through a video driver program to millions of liquid crystals on the
computer screen, and translated into the hue that the eye observes.

ii) Sound signals are also stored in binary form with help of a technique called pulse code modulation in
which continuous sound waves are digitized by taking snapshots of their respective amplitudes every
few milliseconds. The amplitudes are recorded as binary numbers which when read by the computer
audio firmware, respective numbers determine how quickly the coils in the speakers should vibrate thus
creating sounds of different frequencies.

From examples (i) and (ii), we deduce that physical activity such as recording and playing audio signals from
a computer is genetically based on the binary functional characteristics of the computer. So such an activity is
typically inherent, and not predetermined. This feature implies that the amplitudes of the signals correspond
to a sequence of 1s and 0s if the signal is not continuum, and otherwise if continuum. We consider that for a
program or a signal to be continuum, the computer operations must only be based on a single characteristic
invariant binary-based state (either 1s or 0s) and not both states. Computer programs are naturally designed
to operate with respect to binary characteristics. Considerably, the computer programs are distinct from an
inherent mathematical function in that they cannot be characterized as total mathematical functions from an
initial state to a final state without considerations of a time element. So inherently, computer programs have
been characterized as functions or relations with a time component. The characterization based on the time
element is responsible for non-termination in a computer program augmented as either a total function or as a
partial function. The time element may be as simple as a Boolean variable that distinguishes finite from infinite
time [5]. However, for physical interpretation, it can be a numeric variable extended with an infinite value to
account for the non-termination [1]. We proceed by exploring the working principle of a (FSM) based on the
binary system. We consider that given an arbitrary program and an input, for the input to decide with success
if the given program halts, both programs must have a similar initial state (true or false). Otherwise, the input
decides a non-terminating program. This conclusion is based on the genetic understanding that the states 1s

or 0s cannot represent similar computation in a single event. For this reason, the halting problem would be
impossible.

3. Establishing Euclidean geometric problems

The Euclidean geometric system (here we refer to the model established in the first six books of Euclid’s
Elements [11]) accentuates formalizing geometry using axioms, which appeal directly to basic concepts of
geometry such as points and lines as opposed to a background for objects such as Cartesian spaces. For this
paper, we in specific focus on the trisectability of angles posed by the ancient Greeks. The problem of "angles
trisection" asks that: given an arbitrary angle (specifically a plane angle [12]), conceive a straightedge-compass
scheme for sectioning the angle into three "equal" fractions. The inherent angles trisectability statement
asks for a fixed straightedge and compass scheme that works for all plane angles. Further, the problem is
restricted to some fundamental geometric conditions which most people inadvertently violate in their attempts
to trisect angles (we suppose that the illustrated incompatibility schemes show the faults in employing analytic
techniques as authoritative means for proving the non-trisectability of angles. It is upon the non-trisectability
proofs where the geometric cryptographic protocols are established). It is expected that to resolve the trisection
of angles one must use straightedge compass techniques, the solution (proof) must not involve measurements,
an attempt at such a solution should not involve arithmetic, and that the geometric scheme must have a finite
construction step. All these restrictions are inherently in agreement with the arbitrary nature of Euclidean
geometric constructions. We consider that in solving the trisection of an angle, the size of the given angle
should not be known [7].

This observation rules out the validity of applying real numbers as geometric magnitudes (a common
practice characterizing the non-Euclidean geometric proofs). For centuries, mathematicians, philosophers,
and science scholars have wrestled with the trisection of angles, till 1836 when first, the problem was vaguely
stated as an impossible straightedgecompass problem; using ideas from the Galoi’s fields [13]. However, we
retrofit that the stated nontrisectability proof for any angle is flawed and it does not exactly show the trisection
problem as an impossible problem. This work will employ a trisection scheme developed by [7]; to show the
incompatibility between the angle trisection problem and the halting problem. The following §3.1 involves the
genetic characterization of the angle trisection problem.
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3.1. A characteristic proof of the angle trisection problem

A handy example to consider in this case is the geometric proof for the Pythagorean theorem (illustrated
by [7]). The genetic proof for the Pythagorean theorem typically involves establishing the geometric
relationship between magnitudes of similar kinds. In the proof, the is no application of real numbers as
a substitute for geometrically constructed magnitudes. We think the reason for this was to preserve the
purity of the Euclidean geometric system (in which real numbers play significant roles that which is not a
representation of geometric magnitudes). A characteristic proof of trisecting any given angle must equally,
follow the genetic rigor for establishing Euclidean geometric proofs. We consider that, any proof based on the
constructability of only those magnitudes expressible as relative primes of the form a/b suggest an inherently
non-Euclidean geometric generic property that given straightedge and compass, any constructible magnitude
should be expressible as a rational fraction. Throughout §2, attempts have been made to characterize the
existing geometric cryptographic principles. We assert that neither of the available geometric cryptographic
models suits the inherent requirements for a Euclidean geometric proof. This is considered due to the nature
of the proof for the halting problem. In both theory and practice, the proof for the halting problem is shy off
the rigor required for typical straightedge and compass operations proofs. We thus carry on with the analytic
examination of the angles trisection scheme established in [7]. The focus here is to establish the characteristic
relations between the halting problem and the analytic nature of the angles nontrisectability proofs.

3.1.1. Characteristic analysis of the "AG-algorithm" solution

The "AG-Algorithm" provides a fixed system that works for any given angle. The scheme presents a
"mothoddiversity" framework in which results at any desired accuracy are possible. The principle goal of
this section is to provide a review characteristic of the "AG-Algorithm" algorithm using purely algebraic
approaches.

3.1.2. Algebraic equivalence of the "AG-algorithm" solution

We consider Figure 5 adapted from [7] obtained following application of the "AG-Algorithm" on an
arbitrarily small-angle ∠JAB constructed in a unit circle with; A = (0, 0), B = (1, 0), and, J = (cos θ, sin θ).

Let the points O and N trisect the chord JB such that |BO| = |ON| = |NJ|. We set points P and Q on
the unit circle defined by the following equations: P = Intersection of the line D′N and the arc JB. Q =

Intersection of the line OA and the arc JB.

Figure 5. AG-Algorithm Results Analysis (Figure adapted from [7])

Appendix (2(a)) [7] we assume a point of convergence upon which the trisection error the of chord JB
(although for unlike in appendix 1 [7] which is constructed upon a more complex geometric scheme appendix
(2(a)) offers a simple analytic scheme for examining a specified angle which is not inherently obtained through
complex operations as established in appendix 1 [7]) corresponds to the trisection error. Therefore, we reduce
the trisection scheme depicted in Figure 5 (b)) to the assumption based on Figure 5 (a)) on the trisectability of
the curve ĴB so that ∠PAQ = ∠JAB/3, implying PQ = BR = RS = SJ and P̂Q = B̂R = R̂S = ŜJ. Thorough
analysis is done with the aid of a MATLAB code to show that as in the case of n-sectioning of a straight line
segment, the "AG-Algorithm" is an exact trisection [7]. The subsequent argument concerns investigating if
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∠PAQ = θ/3, where θ = ∠JAB. We initiate the investigation with the trisection of chord JB, which aids us in
determining the positions O and N.

Claim 2. Chord JB is exactly trisected such that BO = ON = NJ.

Proof of Claim 2. Applying vector notation based analysis, we set:

JB = (1, 0) + t(cos θ − 1, sin θ) with 0 ≤ t. (1)

From Eq. (1), when t = 0 we get B = (1, 0), and when t = 1 we get J = (cos θ, sin θ). We preserve the positions
B and J for later use. Assuming that chord JB is exactly trisected, we now set t = 2

3 and solve for point N as:

N = (1, 0) + 2/3(cos θ − 1, sin θ) ,

N = (1 + 2/3 cos θ − 2/3, 2/3 sin θ) ,

N = (1/3 + 2/3 cos θ, 2/3 sin θ) .

Again from Eq. (1), we put t = 1/3 and solve for point O as follows:

O = (1, 0) + 1/3(cos θ − 1, sin θ) ,

O = (1 + 1/3 cos θ − 1/3, 1/3 sin θ) ,

O = (2/3 + 1/3 cos θ, 1/3 sin θ) .

This proof assumes that since D′N and OA are parallel as established by [7] and that since points O and N
were obtained using similar plane geometric configurations, chord JB is exactly trisected. Now to compute the
angle trisection errors, we have to determine the points D′N and OA on the circumference of a unit circle. We
proceed using points O and N in writing the line equations D′N and OA as follows:

Line D′N → y − 0 =

(
(2/3 cos θ − 0)

(1/3 + 2/3 sin θ + 1/2)

)
(x + 1/2) . (2)

Eq. (2) further implies that

y = a(x + 1/2) , (3)

Line OA → y − 0 =

(
(1/3 cos θ − 0)

(1/3 + 2/3 sin θ + 1/2)

)
. (4)

Eq. (4) further implies that
y = b(x) . (5)

To find the coordinates of the points P and Q we determine the points of intersections between lines D′N and
OA with the unit circle defined as:

x2 + y2 = 1. (6)

Using the equation for D′N in (6) we get;

x2 + x (x + 1/2) = 1 . (7)

Simplifying (7) we obtain Eqs (8) and (9) as follows;

x2 + a2
(

x2 + x + 1/4
)
= 1 ,

(1 + a2)x2 + a2x + a2/4 − 1 = 0 ,

x =
−a2 +

√
a4 − 4(1 + a2)

(
a2

4 − 1
)

2(1 + a2)
,
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x =
−a2 +

√
a4 − 4

(
a2

4 + a4

4 − 1 − a2
)

2(1 + a2)
,

x =

√
3a4 + 4 − a2

2(1 + a2)
, (8)

y = a

(√
3a4 + 4 − a2

2(1 + a2)
+

1 + a2

2(1 + a2)

)
= a

(√
3a4 + 4 + 1
2(1 + a2)

)
. (9)

Consequently, Eqs (8) and (9) give us the point P, Eq. (10)

P =

(√
3a4 + 4 − a2

2(1 + a2)
,

√
3a4 + 4 + 1
2(1 + a2)

)
. (10)

Now we find the point of intersection between the line OA and the unit circle circumference as follows:

x2 + (bx)2 = 1 = (1 + b2)x2 = 1 = x =

(
1√

1 + b2

)
. (11)

From Eq. (11) we make:

y = b(x) =
(

b√
1 + b2

)
. (12)

So that the point Q becomes:

Q =

(
1√

1 + b2
,

b√
1 + b2

)
. (13)

which lies on the unit circle.
From Figure 5, we apply the dot product in determining the angle between AQ and AP as follows:

u.v = |u|.|v| cos(u, v) . (14)

Since P and P are on the unit circle we get:

cos(∠PAQ) = AP.AQ . (15)

To determine the dot product, we consider the trigonometric functions (cosine and sine) for an angle of some
magnitude (say ∠PAQ = 0.75◦) at 15 decimals accuracy and the slopes a and b as follows;

PAQ = (cos(0.75◦), sin(0.75◦)) = (cos(π/240), sin(π/240)) , (16)

a =

(
(2/3 sin θ)

(1/3 + 2/3 sin θ + 1/2)

)
=

(
(2/3 cos θ)

((1 + 2(cos θ) + 3/2)/3)

)
= (4(sin θ)/(5 + 4(cos θ))) , (17)

b =

(
1/3(sin θ)

2/3 + 1/3(cos θ)

)
= (sin θ/2 + (cos θ)) , (18)

c = (cos θ/2 + (cos θ)) . (19)

Using Eqs (17) and (19) in Eqs (10) and (13), we obtain the coordinates of points P and Q respectively. We then
use in the cosine triple angle formula cos(3θ) = 4 cos3(θ)− 3 cos(θ); the variables a and b and the points P ad
Q in determining the resulting angle trisection error. For simplistic analysis, we employ the MATLAB script
shown in (appendix 2 (a) [7]) which is based on the condition:

pi/(θ × 1000000000)with0 > θ = pi/240.

Under this condition, the "AG-Algorithm" projects the most accurate to exact results depending on the
required accuracies limits.
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4. The angle trisection-Halting problem analogy

The "angle trisection-halting problem" analogy of geometric cryptography is based on the notion that
it is easy to triple a given angle than it is to trisect such an angle. The geometric cryptography common
operations in the realm of symmetric cryptography functions assign the triple of a magnitude (say angle) to
a given angle. Hence, symmetric cryptography can be thought of as a one-way function in which the only
constructions permissible are those mimicking the ruler and compass constructions workflows. This section
aims at constructing a one-way geometric identification scheme that is then used to characterize the "angle
trisection-halting problem" impossibility analogy.

4.1. One-way geometric cryptography identification scheme

This section adopts the identification scheme suggested by [6,10]. The identification model is probabilistic
based on the tossing of a coin. Depending on the number the coin is flipped, the outcome is "true" if and only if
all the chances are "heads" and otherwise, if "tails" appear. We assume two parties; Alex and June where Alex
wishes to establish a means of proving his identity later to June.

4.1.1. Initialization of the identification scheme

Alex publishes a copy of an angle YA which is constructed by Alex as the triple of an angle XA he has
constructed at random. Because trisecting an angle is impossible Alex is confident that he is the only one who
knows XA.

4.1.2. Working of the identification scheme

Alex gives June a copy of an angle R which he has constructed as the triple of an angle K that he has
selected at random. June flips a coin and tells Alex the result. If June says "heads" Alex gives June a copy of
the angle K and June checks that 3 ∗ K = R. If June says "tails" Alex gives June a copy of the angle L = K + XA
and June checks that 3 ∗ L = R + YA. The four steps are repeated t times independently. June accepts Alex’s
proof of identity only if all t checks are successful. This protocol is an interactive proof of knowledge of the
angle XA (the identity of Alex) with error 2−t.

4.2. Characteristic limitations of the "Angle trisection-Halting impossibility" analogy

Through §4.1 we note that although the "angle trisection-halting problem" analogy is typically basic, this
paper asserts that the concept is built upon a misconception. Consider the following statements which expose
the limitations exhibited by the "angle trisection-halting problem" analogy.

a The "angle trisection-halting problem" analogy assumes that the trisectability of an arbitrary angle using
compass and straightedge is inherently probabilistic. This perspective is incorrect as it is built on the
assumption of prior knowledge of the size of the resulting angles that trisect a given angle (as well,
a known angle) thus it is either "true" or the binary 1 when the trisection is achieved, and "false" or
the binary 0 otherwise. In contrast, the problem of angles trisection requires no predetermined results,
neither is the size of the trisectioned angle necessary in the construction (established in §3)

b As illustrated using the (FSM), the halting problem is inherently characterized by the two binary states (1s

and 0s) which determines the nature of a program (either halting or continuum) and so the problem
can never be solved since arbitrarily, computing events based on either (1s or 0s) cannot be inherently
similar as 1 ̸= 0. From a geometric perspective, the use of the states (1s and 0s) assumes that binary 1
is geometrically reducible to binary 0. This is an inconsistent cognitive meaning of the analogy which
implies that a quantity of magnitude 1 is reducible to another quantity of magnitude 0 via compass and
straightedge, thus deciding the halting problem. The Euclidean geometric system forbids the application
of real numbers as geometric magnitudes, and thus sensible, being a practical model, the number 0 is not
allowed in straightedge and compass schemes.

c From §4.1.2, the error expression 2−t suffer two main limitations: (i) it assumes that an angle could be
trisected if the error is infinitely small because the more iterations there is, the small the error (that is,
the error decrease with increase in t values); (ii) it also assumes that the exact trisection of an angle
corresponds to infinitely repeated bisection steps in the interface between the alternatives of the states
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(1s and 0s). Contrary, it is possible to have a small angle exactly trisected at t = 1 (following the
"AG-Algorithm" [7]), and this angle multiplied to the desired fraction that leads to the trisection of a
larger angle (this is an attribute of the "AGAlgorithm"). These limitations are further illustrated using
the MATLAB code provided in appendix (2 (a) [7]), where the trisection of the given angle is exact for
the values of t with respect to the sizes of the angles.

d Further, we consider from §4.1.2, the error expression 2−t. The expression implies that the geometric
trisection of an angle corresponds to repeated bisections in the sense that if we apply the t values
sequentially in according to the number of iterations such that t = 1, 2, 3, 4, 5, 6, 7; we obtain the
corresponding decreasing error results as; t = 0.50.250.1250.06250.031250.0156250.0078125 (the resulting
angle is half of the previous angle). This is the misconception exposed by relating the trisection of an
angle and solving the halting problem. The problem of angles trisection does not ask for approximate
solutions regarding repeated bisections operations.

5. Discussion

Regarding the physical significance of the problems; the halting problem is characterized by a
time component which may be based on a Boolean variable that distinguishes finite from infinite time
[10], or it can be based on a numeric variable (such as integers) extended with an infinite value to
account for non-termination [1]. On the other hand, the trisection of an arbitrary angle problem requires
typically, a plane geometric scheme that sections any given angle into three equal fractions. It has been
established that the Euclidean geometric system allows only those operations mimicking straightedge and
compass rigor of constructions. Although in cryptographic schemes the ordinary practical straightedge and
compass constructions are not exhibited, here we concern ourselves with the principles behind the "angles
trisectability-halting problem" analogy. We begin by asserting that strictly, Euclidean geometric problems are
not time-bound, and so is the trisectability of angles. The notion that the trisection of an angle in general
requires infinite construction steps is a misconstruction of the inherent characteristics of the problem. Indeed,
the notion suggests approximate solutions for angle trisection based on multiple bisections of a given angle.
This view completely violates the standard notion of Euclidean geometric exactness as provided by [14].

Further, the characteristic non–Euclidean proofs (as modeled in cryptographic applications) introduce
time and resource requirements for the problem of angles trisection. Indeed, it is one of the fundamental
reasons that the practical trisectability of an angle via straightedge and compass operations correspond to the
infinite geometric bisection of a plane angle. This notion is an evident characteristic feature of the elliptic
curve cryptographic (ECC) applications [1,15]. For instance, in §4.1.2 the iteration error expression 2−t is
signify that no single instance the trisection of an angle could be numerically exact, or that the trisection
accuracy of an angle increase with the increase in the number of iterations via repeated geometric operations
of bisecting a magnitude. Nonetheless, we treat such reasoning as elusive and an invalid notion about the
trisectability of angles. Further, the anticipation that a trisection is achievable if all results are "heads" impose
a genetic Euclidean restriction which Euclid himself has not demonstrated through the Elements. §4.1.1 has
outlined some of the possible limitations of the "angle trisection-halting problem" impossibility analogy which
makes it an invalid concept for application of cryptographic principles in information processing. Further, the
pseudo-codes in appendix (1 [7]), appendix (2 (a) [7]), and appendix (2 (b) [7]) expose that the trisection of any
angle is possible given the treatment suggested is using the probabilistic error 2−t for t iterations of a program;
in which the error 2−t corresponds to some degree of accuracy. To this effect, we observe that the genetic
differences between the two problems ("angle trisection-halting problem") make them incompatible and thus
invalidating the geometric cryptography concepts.

6. Conclusion

Throughout the provided review, we note that there is no genetic and physical relationship between
the geometric trisection of an arbitrary angle and the halting problem. Thus, the focus of the paper has
been achieved; to create an inherent demarcation between the theory of Euclidean plane geometry and the
computability theory by breaking the ("angle trisection-halting problem") impossibility analogy. Since the
trisection of any angle or any curve that subtends a given angle is reasonably, geometrically possible [7],
the ("angle trisection-halting problem") analogy is fully invalidated. We, therefore, assert that the concept
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of geometric cryptography is genetically faulty and thus it should not be used as an important subject
for cryptographic techniques as it provides weak geometric frameworks that can be easily broken during
information transmissions between entities.
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