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ABSTRACT 
 

The act of adding extra parameters into existing distributions for increasing their flexibility or 
performance is a giant stride in the area of statistical theory and applications. Acquired immune 
deficiency syndrome (AIDS) is a disease caused by human immunodeficiency virus (HIV) that 
leads to a progressive deterioration of the immune system. Mother-to-child transmission of HIV is a 
problem in Nigeria where its rate has been on an increase over the past few years. The 
Exponentiation family is one of the most efficient methods proposed and studied for introducing 
skewness and flexibility into continuous probability distributions with a single shape parameter. In 
this paper, the method of exponentiation has been used to add flexibility to the exponential inverse 
exponential distribution which results to a new continuous model known as “Exponentiated 
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Exponential Inverse Exponential distribution”. The properties, application and estimation of 
parameters of the new distribution using the method of maximum likelihood estimation are 
presented and discussed in this paper. The new model has been applied to a dataset on the rate of 
mother-to-child transmission of HIV and the result is being compared among the fitted distributions 
using some information criteria. 
 

 
Keywords: Exponential inverse exponential distribution; exponentiation family; properties; maximum 

likelihood estimation; application. 
 

1. INTRODUCTION 
 
The exponential distribution used in Poisson 
processes describes the time between events. 
Many of its applications are carried out in life 
testing experiments. It has memoryless property 
with constant failure rate making it unfit for real 
life situations and then creating a problem in 
statistical modeling and applications. 
 
In order to make the exponential distribution 
better, [1] proposed a modified version of the 
exponential distribution called the inverse 
exponential distribution which has been studied 
in some details by [2]. 
 
The inverse exponential distribution was found 
adequate for modeling datasets with inverted 
bathtub failure rates but it also has a limitation 
which is its inability to efficiently analyze datasets 
that are highly skewed (either positively or 
negatively) [3]. This therefore makes it necessary 
for introducing skewness and flexibility into the 
inverse exponential distribution to enable it 
adequately model heavily skewed datasets. 
 
It is worthy to note that there are many 
generalizations of the exponential or inverse 
exponential distribution using differently 

proposed families of continuous probability 
distributions and some of these recent studies 
include the odd Lindley inverse exponential 
distribution [4], the Exponential Inverse 
Exponential distribution [5], the Kumaraswamy 
Inverse Exponential distribution [6], the 
exponentiated generalized Inverse Exponential 
distribution [7], a new Lindley-Exponential 
distribution [8], the Lomax-exponential 
distribution [9], the transmuted odd generalized 
exponential-exponential distribution [10], the 
transmuted exponential distribution [11], 
transmuted inverse exponential distribution[12], 
the odd generalized exponential-exponential 
distribution [13], the transmuted Weibull-
exponential distribution [14] and the Weibull-
exponential distribution [15]. Following these 
recent publications and considering our desire to 
improve the flexibility of the Exponential Inverse 
Exponential distribution which was found to be 
an improvement over the Inverse Exponential 
distribution, this article proposes a new 
distribution called the exponentiated exponential 
inverse exponential distribution.  
 
The probability density function (pdf) of the 
Exponential Inverse Exponential distribution 
(ExInExD) according to Oguntunde PE et al. [6] 
is defined by 
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The corresponding cumulative distribution function (cdf) of Exponential Inverse Exponential 
distribution (ExInExD) is given by 
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where, 0, 0, 0x     ;   is the shape parameter and   is a scale parameter. 

 
This distribution was found to be better than the exponential and inverse exponential distribution. A 
study of its important mathematical and statistical properties as well as the maximum likelihood 
estimation of its parameters and its applications using real life datasets can be found in [6]. 
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The aim of this paper is to introduce a new continuous distribution called the Exponentiated 
Exponential Inverse Exponential distribution (ExpExInExD) using the proposed method [16]. This 
paper is organized in different sections as follows: definition of the new distribution with its plots is 
provided in section 2. Section 3 derived some properties of the proposed distribution. Section 4          
looks at distribution of order statistics. The estimation of parameters using maximum likelihood 
estimation (MLE) is presented in section 5. An application of the new model with other existing 
distributions to mother-to-child HIV transmission rate data is done in section 6 and a conclusion is 
given in section 7. 
 

2. THE EXPONENTIATED EXPONENTIAL INVERSE EXPONENTIAL DISTRIBUTION 
(ExpExInExD) 

 
According to Mudholkar GS et al. [16], a random variable X is said to have an exponentiated form of 
distribution function if its cdf and pdf are respectively given by; 
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where; x > 0, and  is the extra shape parameter,  G x  and  g x are the cdf and pdf of any 

continuous distribution to be modified respectively.  
 
Putting equation (1) and (2) into equation (3) and (4) and simplifying, we obtain the cdf and pdf of the 
ExpExInExD given in equation (5) and (6) respectively as follows: 
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(6) 

 

where 0, 0, 0, 0x       , and  are the shape parameters and   is the scale parameter. 

 
Plots of the pdf and cdf of the ExpExInExD using some parameter values are presented in Fig. 1 as 
follows. 
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Fig. 1. PDF and CDF of the ExpExInExD for different values of the parameters 
 

From the figure above, it can be seen that the pdf of ExpExInExD is positively skewed and takes 
various shapes depending on the parameter values. Also, from the above plot of the cdf, it is clear 
that the cdf equals to one when X approaches infinity and equals zero when x tends to zero as 
normally expected. 
 

3. SOME PROPERTIES OF EXPEXINEXD 
 
In this section, some properties of the ExpExInExD are derived and discussed as follows:  
 

3.1Quantile Function 
 
According to Hyndman RJ et al. [17], the quantile function for any distribution is defined in the form 

   1
qQ u X F u   where  Q u  is the quantile function of F(x) for 0 1u  . 

 
Taking F(x) to be the cdf of the ExpExInExD and inverting it as above will give us the quantile function 
as follows: 
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Simplifying equation (7) above and solving for X presents the quantile function of the ExpExInExD as: 
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(8) 

 
This function is used for obtaining some moments like skewness and kurtosis as well as the median 
and for generation of random variables from the distribution in question. 
 

3.2 Skewness and Kurtosis 
 
This paper presents the quantile based measures of skewness and kurtosis due to non-existence of 
the classical measures in some cases. 
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According to Kenney JF et al. [18], the Bowley’s measure of skewness based on quartiles is given by: 
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Also, the Moors kurtosis based on octiles proposed by Moors JJ [19] and is given by; 
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Where  .Q  is obtainable with the help of equation (8). 

 

3.3 Reliability Analysis of the ExpExInExD 
 

Under this section, a derivation and study of the survival (or reliability) function and the hazard (or 
failure) rate function are presented. 
 

The Survival function describes the likelihood that a system or an individual will not fail after a given 
time. Mathematically, the survival function is given by: 
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                                                                                                                      (11)

  

Applying the cdf of the ExpExInExD in (11), the survival function for the ExpExInExD is obtained as: 
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(12) 

 

The plot for the survival function of the ExpExInExD using different parameter values is shown in Fig. 
2 below: 
 

 
 

Fig 2. Survival function of the ExpExInExD at different parameter values 
 

The plot in Fig. 2 shows that the probability of survival is always sure at initial time or early age and it 
decreases as time increases up to zero (0) at infinity. 
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Hazard function is the probability that a component will fail or die for an interval of time. The hazard 
function is defined as; 
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Meanwhile, the expression for the hazard rate of the ExpExInExD is given by: 
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(14) 

 

where , , 0    . 

 
A plot of the hazard function for arbitrary parameter values is presented in Fig. 3 as follows 
 

 
 

Fig. 3. Hazard function of the ExpExInExD 
 

The figure above revealed that the ExpExInExD has increasing as well as constant failure rate which 
implies that the probability of failure for any random variable following a ExpExInExD increases as 
time increases, that is, probability of failure or death increases with age. It also shows that the failure 
rate could be constant after sometimes depending on the parameter values. 
 

4. DISTRIBUTION OF ORDER STATISTICS 
 

Suppose 1 2, ,....., nX X X  is a random sample from the ExpExInExD and let 1: 2: :, ,.....,n n i nX X X  

denote the corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the i
th

 
order statistic can be obtained by 
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Using (5) and (6), the pdf of the ith order statistic :i nX , can be expressed from (15) as; 
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Hence, the pdf of the minimum order statistic  1X  and maximum order statistic  nX  of the 

ExpExInExD are respectively given by: 
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5. ESTIMATION OF UNKNOWN PARAMETERS OF THE EXPEXINEXD 
 

In this section, the estimation of the parameters of the ExpExInExD has been done by using the 

method of maximum likelihood estimation (MLE). Let nXXX .,,........., 21  be a sample of size ‘n’ 

independently and identically distributed random variables from the ExpExInExD with unknown 

parameters ,  and   defined previously.  

 

The likelihood function of the ExpExInExD using the pdf in equation (6) is given by; 
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Let the natural logarithm of the likelihood function be,  log | , ,l L X    , therefore, taking the 

natural logarithm of the function above gives: 
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Differentiating l  partially with respect to ,  and   respectively gives the following results; 
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(23) 

 
Making equation (21), (22) and (23) equal to zero 
(0) and solving for the solution of the non-linear 
system of equations produce the maximum 

likelihood estimates of parameters ,  and  . 

However, these solutions cannot be obtained 
manually except numerically with the aid of 
suitable statistical software like R. 
 

6. APPLICATION TO MOTHER-TO-CHILD 
HIV TRANSMISSION RATE 
(MTCHIVTR) 

 
This section presents a dataset on the rate of 
mother-to-child transmission of HIV (Human 
Immunodeficiency Virus) in Nigeria from the year 
2000 to the year 2019. The descriptive statistics 
and graphical summary of the dataset is also 
presented. 
 
The mother-to-child HIV transmission rate per 
1,000 of population in Nigeria between 2000 and 
2019 is as given below. 
 

37.35, 37.08, 37.00, 36.98, 36.79, 36.75, 34.35, 
32.96, 31.84, 30.35, 30.53, 28.96, 26.71, 22.50, 
19.84, 20.04, 19.44, 20.82, 22.09, 22.16 
 

Data source: www.data.unicef.org 
 

The following table and figures present a critical 
exploration of the above dataset with some 
important discussions: 
 

Following the summary of the descriptive 
statistics in Table 1 and the histogram, box plot, 
density and normal Q-Q plot generally referred to 
as graphical summary in Fig. 4, it is seen that the 
rate of transmission of HIV from mother to child 
is bimodal and approximately normally 
distributed. 
 
The following figure shows the trend in the rate of 
mother-to-child HIV transmission from 2000 to 
2019 using a bar chart. 

After checking the distribution of the dataset in 
Fig. 4, the bar chart in Fig. 5 reveals the trend in 
the rate of mother-to-child transmission of HIV 
which indicates that mother-to-child HIV 
transmission was a very big problem from the 
year 2000 to 2005 with a non-decreasing rate. 
Meanwhile, there came a slightly decreasing 
trend in the rate of HIV transmission from mother 
to child as from the year 2006 to 2014, however, 
what we have from the year 2015 to 2019 is 
certainly an increasing pattern in the rate of 
mother-to-child transmission of HIV which 
suggests that more efforts need to be put in 
place to adequately reduce or eradicate the 
increasing rate of mother-to-child HIV 
transmission in Nigeria.  
 
Considering the increasing rate of mother-to-
child HIV transmission and the flexibility of the 
proposed distribution, this study fits the 
Exponentiated Exponential Inverse Exponential 
distribution (ExpExInExD) to the above dataset in 
comparison with other existing probability 
distributions such as Exponential Inverse 
Exponential distribution (ExInExD), Odd Lindley 
Inverse Exponential distribution (OLINExD), 
Lindley distribution (LIND), Inverse Exponential 
distribution (InExD) and Exponential distribution 
(ExD). 
 
To identify the most efficient or most fitted 
distribution to the MTCHIVTR dataset, the 
following model selection criteriawere used which 
include the value of the log-likelihood function 
evaluated at the MLEs (ℓ), Akaike Information 
Criterion, AIC, Consistent Akaike Information 
Criterion, CAIC, Bayesian Information Criterion, 
BIC, Hannan Quin Information Criterion, HQIC, 
Anderson-Darling (A*), Cramѐr-Von Mises (W*) 
and Kolmogorov-smirnov (K-S) statistics. More 
about the statistics A*,W* and K-Scan                         
be seen in [20]. Some of these                                 
statistics are computed using the following 
formulas: 
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Table 1. Descriptive statistics for the dataset 
 

Parameters n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

Dataset A 20 19.44  22.14  30.44  36.76  29.23   37.35  47.55  -0.18919 -1.55278  
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Fig. 4. A graphical summary of the dataset 
 

 
 

Fig. 5. A Bar chart showing the Trend of Mother-to-child HIV transmission rate in Nigeria from 
2000 to 2019 

 

2 2AIC k   ,  2 log ,BIC k n 
 
2

1
2 kn

n k
CAIC

 
   and  2 2 log logHQIC k n     

 
 
Where ℓ denotes the value of log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. To cut the long story short, the distribution with the lowest 
values of these criteria is considered to be the best model that fit the dataset. Also, all the required 
computations are performed using the R package “Adequacy Model” which is freely available from 
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf. The results from this R 
package and the commands are shown in tables as follows: 
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Tables 2 lists the Maximum Likelihood Estimates of the model parameters, Table 3 presents the 
statistics AIC, CAIC, BIC and HQIC while A*,W* and K-S for the fitted models are given in Table 4. 
 

Table 2. Maximum likelihood parameter estimates for the dataset 
 

Distribution ̂  ̂  ̂  

ExpExInExD 9.583134  1.080386  9.188880  
LIND - 0.0663024 - 
OLINExD 3.0133921  0.2039191  - 
ExD 0.03448022 - - 
ExInExD 9.1300972  0.4041777  - 
InExD 6.310545 - - 

 
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC based on the dataset used 

 
Distribution ̂  AIC CAIC  BIC  HQIC Ranks 

ExpExInExD 69.41392  144.8278  146.3278  147.815  145.411  1st 
LIND 80.93501  163.87  164.0922  164.8657  164.0644  2

nd
 

OLINExD 80.99396  165.9879  166.6938  167.9794  166.3767  3
rd

 
ExD 87.50246  177.0049  177.2271  178.0006  177.1993  4th 
ExInExD 84.601  173.202  173.9079  175.1935  173.5908  5

th
 

InExD 101.6024  205.2049  205.4271  206.2006  205.3992  6th 
 

Table 4. The A
*
, W

*
,K-S statistic and P-values based on the dataset used 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
ExpExInExD 1.095666  0.1673933  0.20667  0.3152  1st 
LIND 1.042629  0.1535517  0.39133  0.002858  2

nd
 

OLINExD 1.04269  0.1535964  0.40427  0.001824  3rd 
ExD 1.044671  0.1541544  0.48844  6.382e-05  4

th
 

ExInExD 1.053079  0.1566282  0.49046  5.832e-05  5th 
InExD 1.115619  0.1725355  0.7228  3.89e-11  6

th
 

 
The following figure presents a histogram and estimated densities and cdfs of the fitted models to the 
dataset. 
 

 
 
Fig. 6. Histogram and plots of the estimated densities and cdfs of the fitted distributions to the 

dataset 
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Fig. 7. Probability plots for the six fitted distributions based on the MTCHIVTR dataset 
 
It is observed from the results in Table 2 that the 
proposed distribution (ExpExInExD) performs 
better than the other fitted distributions based on 
the values of the first four information criteria 
(AIC, CAIC, BIC and HQIC). Also, deciding on 
the best distribution based on the statistics in 
Tables 4, we conclude again that the 
ExpExInExD has the minimum values of A*, W* 
and K-S statistic compared to every other model 
fitted to the dataset. From all these model 
selection criteria, it is clear that the ExpExInExD 
has the overall best fit to the mother-to-child HIV 
transmission rate dataset and therefore it is 
chosen as the most adequate model for 
explaining this dataset as considered in this 
study.  
 
The histogram of the dataset together with the 
fitted densities and estimated cumulative 
distribution functions given in Fig. 6 also confirm 
that the proposed model analyses the dataset 
better than the LIND, OLINExD, ExInExD, ExD 
and the conventional InExD. Also, the probability 
plots presented in Fig. 7 provide evidences that 
the proposed distribution (ExpExInExD) is more 

flexible than the other five distributions (LIND, 
OLINExD, ExInExD, ExD and InExD) as already 
revealed previously in Tables 3 and 4 as well as 
Fig. 6 respectively. 
 
These results above also prove the fact that 
adding parameter(s) to most continuous 
probability distributions leads to increase in its 
flexibility in modeling real life data as it has 
already been reported by many other authors in 
the previous studies. 
 

7. CONCLUSION 
 

A new extension of the inverse exponential 
distribution known as “Exponentiated Exponential 
Inverse Exponential distribution” has been 
proposed in this paper. Some important 
properties of the proposed distribution have been 
investigated. These properties include quantile 
function, coefficient of skewness and kurtosis, 
survival function and hazard function. The paper 
also obtained the distribution of minimum and 
maximum order statistics based on the proposed 
distribution. It also estimated the unknown 
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parameters of the model by method of maximum 
likelihood estimation. The proposed distribution 
has been applied to a dataset on mother-to-child 
HIV transmission rate in Nigeria from the year 
2000 to 2019 in comparison with other existing 
distributions. A brief exploratory analysis of the 
dataset shows that there is an increasing trend in 
the rate of mother-to-child transmission of HIV in 
Nigeria and we demand for immediate actions 
from relevant health agencies. The results from 
the fitted models based on the MTCHIVTR 
dataset reveal that the exponentiated exponential 
inverse exponential distribution fits the dataset 
much better than the other five fitted 
distributions. This also indicates that the 
proposed model could be used for analysis of 
HIV surviving patients. Therefore it is very clear 
that the new model is more flexible than the other 
five models considered in this study and should 
be used for modeling other real life situations 
most especially in medical sciences. 
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