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Abstract

In this paper, we introduce the generalized Grahaml sequences and we deal with, in detail, three
special cases which we call them Grahaml, Grahaml-Lucas and modified Grahaml sequences. We
present Binet’s formulas, generating functions, Simson formulas, and the summation formulas for
these sequences. Moreover, we give some identities and matrices related with these sequences.
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1 Introduction

In this paper, we investigate the generalized Grahaml sequences and we investigate, in detail, three
special cases which we call them Grahaml, Grahaml-Lucas and modified Grahaml sequences.

The sequence of Fibonacci numbers {F,} and the sequence of Lucas numbers {L,} are defined by

F, = n71+Fn72, TLZQ, FOZOv F1:17
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and
Ln:Ln—1+Ln—27 71227 L0:27 111:1

respectively. The generalizations of Fibonacci and Lucas sequences lead to several nice and interesting
sequences.

The generalized Tribonacci sequence {Wy, (Wo, W1, Wa; 7, s,t)}n>o (or shortly {Wy}n>0) is defined
as follows:

Wn =1rWh_1 4+ sWp_o +tW,,_3s, Wo=a,Wi=bWa=¢c, n>3 (1)

where Wy, W1, Wa are arbitrary complex (or real) numbers and r, s,¢ are real numbers.
This sequence has been studied by many authors, see for example [1,2,3,4,5,6,7,8,9,10,11,12,13].
The sequence {W, },>0 can be extended to negative subscripts by defining
Won = —§W—<n—1) - %W—m—z) + %W—m—a)
for n =1,2,3,... when t # 0. Therefore, recurrence (1) holds for all integer n.

As {W,} is a third order recurrence sequence (difference equation), it’s characteristic equation is

2 —ra? —sx—t=0 (2)
whose roots are
a = a(r,s,t):%-i-A-i-B
B8 = ﬁ(r,s,t)ngrwAerQB
vy o= ’y(r,s,t):g—FwQA—&-wB
where
™ st 1/3 ™ rs t 1/
A = <E+E+5+\/Z> ,B:(2—7+E+5—\/Z)
A = A(r,s,t)z%—rfosgg—i—%ﬁ—;—i—i—g, w:_l%i\/gzexp(Qm/B)

Note that we have the following identities

at+f+y = 1
af+ay+py = -—s,
afy = t.

If A(r,s,t) > 0, then the Equ. (2) has one real () and two non-real solutions with the latter being
conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can be
expressed, for all integers n, using Binet’s formula

bia™ n bo 8" " bay™
(a=B)a=y) B-a)B-7) (—a)y—5)

W, = (3)

where

by =Wy — (ﬁ +’Y)W1 + ByWo, ba = Wa — (CE +’Y)W1 + ayWo, bz = Wy — (a + B)Wl + afW.
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Note that the Binet form of a sequence satisfying (2) for non-negative integers is valid for all integers
n, for a proof of this result see [14]. This result of Howard and Saidak [14] is even true in the case
of higher-order recurrence relations.

3,t = 5 and in this case we write V,, = W,,.

In this paper we consider the case r = 2, s = 3,t
= {Va(Vo, V1, V2)}n>0 is defined by the third-order

A generalized Grahaml sequence {V,}n>0
recurrence relations

Vi =2Vii_ 1 +3Vi 2 +5Vi 3 (4)

with the initial values Vo = co, Vi = c1, Va = c2 not all being zero.

The sequence {V;, }n>0 can be extended to negative subscripts by defining

3 2 1
Vop=—2V_ n—1) — Ve n— V- n—:
5/ —(n-1) = gV-(n-2) + £Vo(n-3)

for n =1,2,3,.... Therefore, recurrence (4) holds for all integer n.

(3) can be used to obtain Binet formula of generalized Grahaml numbers. Binet formula of
generalized Grahaml numbers can be given as

bra” 4 baf3" n b3y
(@a=B)a=7)  B-a)B-7) (-a)ly=5)

Vo =

where
b1 =Vo— (B+7)Vi+ ByVo, ba = Vo — (a+9)Vi + avVo, b3 = Vo — (a+ B)Vi + aBVb. (5)

Here, o, 8 and ~are the roots of the cubic equation z® — 2z% — 32z — 5 = 0. Moreover
1/3 1/3
o — 2 n 205 n 1231 n 205 /1231
3 54 V108 54 V108
1/3 1/3
g = ngw %Jr /1231 o 205 /1231
3 54 108 54 108
1/3 1/3
_ 2 4w 205 n 1231 n 205 /1231
T 3T s TV 108 “\ 54 108

where

1434
= %\/g = exp(27i/3)
Note that
atft+y = 2
af+ay+py = =3,
afy = b.

The first few generalized Grahaml numbers with positive subscript and negative subscript are given
in the following Table 1.
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Table 1. A few generalized Grahaml numbers

n Va V_n

0 Vo

1 1% %Vz*%‘ﬁ* %Vo

2 Ve wvi- v - 21

3 5Vo +3V1 + 2V; %%—1175‘/1—515‘/2

4 10Vo + 11V4 + 7Va Vo — 2V — 221,

5 35V0 + 31V4 + 25V =Vo + %%Svl - %VZ

6 125V + 110V1 + 81Va 1?:5 é);s% - 1546125 Vi+ 1;6225‘/2
7 405V + 368Vi 4 272V5 Vo — 7684;% Vi — 20tV
8 1360Vo + 1221Vi + 912V> 32900568215 Vo + 35920 6325 Vi - 31970660275 Va

Now we define three special cases of the sequence {V,}. Grahaml sequence{Gy}n>0, Grahaml-
Lucas sequence { Hy },>0 and modified Grahaml sequence { E,, } >0 are defined, respectively, by the
third-order recurrence relations

Grnt3 = 2Gpy2 + 3Gnt1 + 5Gy, Go=0,G1 =1,Ga =2,

Hpi3=2H,42 4+ 3Hn41 + 5H,, Ho=3,H, =2,H, =10, (6)
and
En+3 = 2En+2 —+ 3En+1 + 5En, Fo = O,El = 1,E2 = 1, (7)
The sequences {Gn }n>0, {Hn}n>0 and {Ey, }n>0 can be extended to negative subscripts by defining
3 2 1
Gon=—2G_(n-1)— =G_(n- —G_(n-3), 8
£G-n-1) = G- + £G-(n-3) (8)
3 2 1
H ,=——H (n1)— -H_(n_ —H_(_
(-1 — g H_(n-2) + g H_(n-3) )
and 3 2 1
Eop=—2F (= 2F o+ =FE_(_ 1
(-1~ g E-m-2) + g E-(n-3) (10)

for n =1,2,3, ... respectively. Therefore, recurrences (8), (9) and (10) hold for all integer n.

Note that the sequences G, H,, and E,, are not indexed in [15] yet. Next, we present the first few
values of the Grahaml, Grahaml-Lucas and modified Grahaml numbers with positive and negative
subscripts:

Table 2. The first few values of the special third-order numbers with positive and
negative subscripts

n 0 1 2 3 4 5 6 7 8 9 10
Gnp, 0 1 2 7 25 81 272 912 3045 10186 34067
a 0 1 _ 3 _ 1 _ 239 112 3504 _ 17607 20581

—n 5 25 125 625 3125 15625 78125 390625 1953125
Hy, 3 2 10 41 122 417 1405 4671 15642 52322 174925
H _3 _ 11 138 _ 379 518 8794 _ 30677 _ 8859 553197 _ 2337926

—n 5 25 12 625 3125 15625 78125 390625 1953125 9765625
Ep 0 1 1 5 18 56 191 640 2133 7141 23881
E _1 8 _ 14 _ 63 529 _ 1307 _ 2944 35127 _ 108616 _ 99022

—n 5 25 125 625 3125 15625 78125 390625 1953125 9765625

For all integers n, Grahaml, Grahaml-Lucas and modified Grahaml numbers (using initial conditions
in (5)) can be expressed using Binet’s formulas as

n+1 /877,—0—1 ,yn+1

T e—Pa- B-aB- T h-a0-8"
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and
H,=a"+8"+7",
and (a— 1)a (8- 1)p" (= 1)y"
__(a—1ua - v = 1)y
L | P S0 B Sl v T vy )
respectively.

2 Generating Functions

Next, we give the ordinary generating function > V,z" of the sequence V,.

n=0

o0
Lemma 2.1. Suppose that fy, (z) = >, V,hz" is the ordinary generating function of the generalized
n=0

Grahaml sequence {V,,},>0. Then, > V,z" is given by

n=0

ZV L= Vo + (Vi — 2Vo)z + (Vo — 2V1 — 3Vo)2?

1—2x — 322 — 523 (11)

n=0

Proof. Using the definition of generalized Grahaml numbers, and substracting 2z . , Vaa™,
32237 Vaa™ and 52° 300 Via™ from Y 0% Via™ we obtain

(1—-2x— 322 — 5:r3) i Vo, = i V,z" — 2z i Voax" — 32> i Voo™ — 522 i Vo™
n=0 no:OO o7;:0 ;:0 Oz:()
= > Vaa"—2> V"t =3) Vua" -5 Ve
n=0 n=0 n=0 n=0

= ) Vaz"=2> Voaz" =3 Vioa"—5» V, "
n=0 n=1 n=2 n=3
= (Vo4 Viz 4 Vaz®) — 2(Vox + Via?) — 3V
+ Z(Vn - 2Vn71 - 3Vn72 - 5Vn73)xn
n=3

= Vo + Viz + Vaz? — 2Vox — 2Vi2? — 3Vpz?
= Vo4 (Vi —2Vo)x + (Vo — 2Vi — 3Vp)a?.

Rearranging above equation, we obtain

i I (Vi = 2Vo)z + (Vo — 2V1 — 3Vp)z?
= 1 — 2z — 322 — 52° '

The previous Lemma gives the following results as particular examples.

Corollary 2.1. Generated functions of Grahaml, Grahaml-Lucas and modified Grahaml numbers

are -
X
Gn "= )
7;) T T 27 — 327 — 543
and
= 3 — 4z — 322
Hn "= E
T;) Y T2 — 327 — 523
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and

> Zl?—.’L’Q

Enz" =
> Eux 1— 22 — 322 — 53
n=0

respectively.

3 Obtaining Binet Formula from Generating Function

We next find Binet formula of generalized Grahaml numbers {V;,} by the use of generating function
for V,.

Theorem 3.1. (Binet formula of generalized Grahaml numbers)

d10¢n dzﬁn d3’yn

@ A7 B-a@-7 G- 12
where
di = Vool + (Vi —2Vp)a+ (Vo — 2Vi — 3Vp),
dy = VoB®+ (Vi—2V0)B+ (Va—2Vi — 3V0),
ds = Voy’ 4+ (Vi —2Vo)y + (Vo — 2V4 — 3p).
Proof. Let
h(z) =1 -2z — 3z° — 52°.
Then for some a, 8 and v we write
h(z) = (1 — ax)(1 — Bz)(1 — yz)
ie.,
1—2z—32° —52° = (1 — ax)(1 — Bz)(1 — ) (13)
Hence é, % and % are the roots of h(x). This gives «, 8, and ~ as the roots of
1 2 3 5
y=1-%2_=2 _ 2
h(x) x  x?  xd 0
This implies z* — 222 — 3z — 5 = 0. Now, by (11) and (13), it follows that
N Vot (Vi —2Vo)x 4 (Vo — 2V — 3Vp)a?
Z Ve = .
Z (1—az)(1 - B2)(1 - 72)
Then we write
Vo+ (Vi —2Vo)z + (Vo — 2Vi — 3Vp)z? Ay n Az n As (14)
(I —az)(1 - pz)(1 —yz) (I-—az) (1-Pz) (1-7z)

So
Vo+ (Vi —2Vo)a+ (Vo —2V1 —3Vp)a® = A1 (1—Bz)(1—vz)+ As(1—ax) (1 —yz)+ Az (1 —az)(1—Bz).
If we consider z = £, we get Vo + (Vi —2Vo) £ + (Vo —2V1 —3Vp) 25 = Ay (1 — g)(l — ). This gives
?(Vo+ (Vi —2Vo) 2 + (Va —2Vi —3V0) &) Voo + (Vi — 2Vo)a + (Vo — 2V — 3Vp)
(a—=pB)(a=") (a=B)(a=7)

A=

Similarly, we obtain
_ VoB? + (Vi —2Vo)B+ (Ve —2Vi = 8V0) ,  Voy* + (Vi — 2Vo)y + (Ve — 2Vi — 3Vh)

A2 B — o) (B —7) o) - B)
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Thus (14) can be written as

Z Vo™ = A1(1 —ax) ' 4+ Ax(1 — Bz) " + Az(1 — ).

n=0
This gives
Z Vo' = Ay Z az" + A, Z Bz + As N = Z(Ala" + Ax8" + Asy™)x".
n=0 n=0 n=0 n=0 n=0

Therefore, comparing coefficients on both sides of the above equality, we obtain
Vi = A1a™ + A28™ + A"

where

Voo + (Vi — 2Vo)a + (Va — 2V4 — 3V4)

(a=B)a—-7) ’
A, — %W+w%—2%m+(%—2m—3wx
B-a)(F—)
As Voy® + (Vi — 2Vo)y + (Vo — 2V4 — 3V0)’
(y=a)(v—=58)
and then we get (12).
Note that from (5) and (12) we have
Vo= (BHY)Vi+ByVo = Vool + (Vi —2Vo)a + (Vo — 2V4 — 3Vp),
Vo—(@+y)Vit+ayVo = VoB®+ (Vi —2V0)B + (Va — 2V4 — 3Vp),
Va—(a+B8)Vi+afVe = Vo’ + (Vi —2Vo)y + (V2 — 2Vi — 3V0).

Next, using Theorem 3.1, we present the Binet formulas of Grahaml, Grahaml-Lucas and modified
Grahaml sequences.

Corollary 3.2. Binet formulas of Grahaml, Grahaml-Lucas and modified Grahaml sequences are

G B an+1 ﬂn+1 ,yn+1
T A BB G-aF -8
and
H,=a"+ 8" +7",
and
N O VN (. I N e
"a=Bla=y) B-a)B-v) (-a)(y-8)
respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [16].
Take k = ¢ = 3 in Corollary 3.1 in [16]. Let

o a1 ot a1
A = g B 1 | M= gt B 1,
¥ oy 1 oy 1
o? o™t o? a ot
Ay = g Bt 1 A= B2 B Bt
ot v oy
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Then the Binet formula for Grahaml numbers is

3
1
Gn = det(A);G4,jdet(A] K(nget(Al)+nget(A2)+G1det(A3))
1
= o (7det(A1) + 2det(Az) + det(As))
a" b a1 a2 ot a? a ot 2 a1
= (7] 8" B 1|42 g 1|48 B B/ B B 1
oy 1 ot v oy ! oy 1

Similarly, we obtain the Binet formula for Grahaml-Lucas and modified Grahaml numbers as

H, = K I{3 det Al + Ho det(A2) + H; det(AS))
a™ 1 o o™t o1 > a o™t o a1
_ ,Bn 1 |+10 ﬂi ﬁn_i 1 |+2 ﬁj B ﬁn_i / /32 p 1
" 1 oAt 7oy oyt
and
B, = X (s det(A1) + > det(Asz) + Ei det(As))

a1l a1 a? o™t o1 o a o™t o’ o 1

I ol IS ol - A | WA -

AUyl v omt ol o oyl

respectively.

4 Simson Formulas
There is a well-known Simson Identity (formula) for Fibonacci sequence {F),}, namely,
Fop1Fy ) — F2 = (—-1)"

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as
well. This can be written in the form

Fn+1 Fn _ n

’ Fn Fn—l o ( 1) ’

The following theorem gives generalization of this result to the generalized Grahaml sequence
{Vn}nZO'

Theorem 4.1 (Simson Formula of Generalized Grahaml Numbers). For all integers n, we have

Vn+2 Vn+1 Vn V2 ‘/1 ‘/0
Vg1 Vi Vo1 | =5" Vi Vo Vo1 |. (15)
Vo Vaor Voo Vo Vi Voo

Proof. (15) is given in Soykan [17].

The previous theorem gives the following results as particular examples.
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Corollary 4.2. For all integers n, Simson formula of Grahaml, Grahaml-Lucas and modified
Grahaml numbers are given as

Gn+2 CTVn-ﬁ-l Gn
Gn+1 Gn anl = 75n—1’
Gn anl Gn72

and
Hn+2 Hn+1 Hn
Hny1w  Hp Hpq | =-1231x5""2,
Hn anl Hn72
and
En+2 En+1 En
Eni E, E,—1 |=-9x 5n727
E, Eni1 E,o
respectively.

5 Some Identities

In this section, we obtain some identities of Grahaml, Grahaml-Lucas and modified Grahaml
numbers. First, we can give a few basic relations between {Gr} and {H,}.

Lemma 5.1. The following equalities are true:

125H,, = 138Gn+4 — 331Gn43 — 379G 42, (16)
25H, = —11Gnis+ TGniz + 138G,
5H, = —3Gn+2+21Gpy1—11G,,
H, = 3Gn+1—4G, —3Gy-1,
Hy, = 2Gn+6Gn_1+15Gn_o,
and

6155G, = 18Hp44 — 166H,4+3 + 461H 42,
1231G, = —26H,13+103Hnq2+ 18Hpq1,
1231G, = 51Hpi2 — 60H, 1 — 130H,,
1231G,, = 42H,4+1 + 23H, +255H,_1,
1231G, = 107H,+ 381H,_1 + 210H,, .

Proof. Note that all the identities hold for all integers n. We prove (16). To show (16), writing
H, =ax Gn+4+b>< Gn+3+c>< Gn+2

and solving the system of equations

Hy = axG4+bxG3+cxGo
Hi = axGs5+bxGs+cxGs
Hy = axGg+bxGs+cecxGy
we find that a = %, b= f%, c= f%. The other equalities can be proved similarly.
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Note that all the identities in the above Lemma can be proved by induction as well.

Secondly, we present a few basic relations between {G,} and {E,}.

Lemma 5.2. The following equalities are true:

125E,
25E,
5k,
E,

and

45G,
9G,
9G,
9G,
9G,

4G s + 68Css — 63Gn o,
8Gnts — 21Gnis — 14Grsn,
—Gni2 +2Gni1 + 8Gha,

Gn — Gn-1,

44+ 13Enis + TEnso,
Enyz — Enio —4FE,41,
Eni2 — Eny1 +5En,,

Eni1 +8E, +5FE,_1,

10E, +8FEn_1+5F,_2.

Thirdly, we give a few basic relations between {H,} and {E,}.

Lemma 5.3. The following equalities are true:

225H,
45H,
9H,
9H,
9H,

and

30775E,
6155E,
1231E,
1231E,
1231E,

13414 — 233Ep4s — 572, 1,
TEnts — 34Ey 1o + 134E,, 41,
—4Fn12 + 31En 1 + TEn,
23Fn11 — 5En — 20E, 1,

A1E, +49E,_1 + 115E,_».

—371Hy s + 2Hn s + 4518 Hp o,
—148H 43 + 681Hyq2 — 371 Hp 41,
TTHp42 —163H, 11 — 148H,,
—9H,,+1 +83H, + 385H,—1,
65H, + 358H,—1 —45H,_>.

We now present a few special identities for the modified Grahaml sequence {E, }.

Theorem 5.1. (Catalan’s identity) For all integers n and m, the following identity holds

En+mEn—m - E’?L

Proof. We use the identity

and the identity (22).

(Gn+m - Gn+m—1)(Gn—m - Gn—m—l) - (Gn - Gn—1)2
(Gn(Gm —

Gm+1) + Gn—l(_Gm + Gm—Q) + Gn—Q(_Gm + Gm—l))
(Gn(anL - Glfm) + anl(_anL + G*’VV‘L*Z) + Gn72(_Gf7n + Gfmfl))
_(Gn - C;'nfl)2

E'n Gn - Gn—l
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Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the modified Grahaml
sequnce

Corollary 5.2. (Cassini’s identity) For all integers numbers n and m, the following identity holds
Eni1En—1— Ef = (Gni1 — Gp)(Gno1 — Gro2) — (Gn — Gno1)®.

The d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities can also be obtained by using F, = G,, —
Gr—1.The next theorem presents d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities of modified
Grahaml sequence {En}.

Theorem 5.3. Let n and m be any integers. Then the following identities are true:
(a) (d’Ocagne’s identity)
Eni1En — EnEni1 = (Gmir — G )(Gn — Gro1) — (G — G—1)(Gry1 — Gi).
(b) (Gelin-Cesaro’s identity)
Eni2Eni1Ey 1En o—Ep = (Gn+2_Gn+1)<Gn+1_Gn)(anl_Gn72)(Gn72_Gn73)_(Gn_anl)Ll-
(c) (Melham’s identity)
Ent1Ent2Enye — Enys = (Guy1 — Gn)(Gnyz — Gni1)(Gnis — Gnis) — (Gnys — Gnya)®.

Proof. Use the identity E,, = G», — Gn—1.

6 Linear Sums

The following proposition presents some formulas of generalized Grahaml numbers with positive
subscripts.

Proposition 6.1. Ifr =2,s=3,t =5 then for n > 0 we have the following formulas:

(a) Z:=o Vi = é(Vn+3 — Vg2 — 4V — Vo + Vi +415).
(b) i o Var = 5= (—2Vanta + 11Vany1 + 35Va, + 2Va — 11V3 + 10Vp).
(C) ZZ:O Vok+1 = ﬁ(7v2n+2 + 29Van4+1 — 10Vay, — 7Vo + 16V7 + 10V0).

Proof. Take r =2,s =3,¢ =5 in Theorem 2.1 in [18], see also [19].

As special cases of above proposition, we have the following three corollaries. First one presents
some summing formulas of Grahaml numbers (take V;, = G,, with Go =0,G1 =1,G2 = 2).

Corollary 6.1. For n > 0 we have the following formulas:

(a) ZZ:O Gk = %(Gn+3 — Gn+2 — 4Gn+1 — 1).
(b) Yh_oGar = 5=(—2G2ny2 + 11G2n 41 + 35G2n — 7).
(e) YroGary1 = r15(7G2n+2 +29G2n+1 — 10G2, + 2).

Second one presents some summing formulas of Grahaml-Lucas numbers (take V;, = H, with
Ho =3,Hy, =2, Hy = 10).

Corollary 6.2. Forn > 0 we have the following formulas:
(a) Xi_o Hr = §(Hnys — Hny2 — 4Hni1 +4).
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(b) > o Ha = f15(_2H2n+2 + 11H2pn41 + 35H2, + 28).
(C) Z::O H2k+1 = T15(7H2"+2 + 29H2n+1 — 10H2n — 8)

Third one presents some summing formulas of modified Grahaml numbers (take V,, = E, with
Eo=0,F =1, =1).

Corollary 6.3. For n > 0 we have the following formulas:
(@) Y _oEBk=5(Enys — Enta —4Eny1).

(b) Yh_oEak = 5= (—2F2n 42 + 11E2n41 4 35F2, — 9).
(c) YopoForyr= r15(7E2n+2 +29F5n41 — 10E3, 4+ 9).

The following proposition presents some formulas of generalized Grahaml numbers with negative
subscripts.

Proposition 6.2. Ifr =2,s=3,t =5 then for n > 1 we have the following formulas:
(a) Z:zl V_p = é(—lOV,n,l —8&V_ o —5V_, 3+ Vo—-V; — 4V0).

(b) > h i Veok = 5= (=TV_onq1 +16V_on + 10V_2,_1 — 2Va + 11V; — 10Vp).

() Yp_iVeaks1 = 35 (2Viong1 — 11Vogn — 35V_9n 1 + 7V2 — 16V1 — 10V0).

Proof. Take r = 2,s =3,¢ =5 in Theorem 3.1 in [18], see also [19].

From the above proposition, we have the following corollary which gives sum formulas of Grahaml
numbers (take V,, = G, with Go =0,G1 =1,G2 = 2).

Corollary 6.4. For n > 1, Grahaml numbers have the following properties.
(a) ZZ:I G_p = %(—10077171 —8G_p—2—5G_n_3+ 1).

(b) Yp_, Gook = & (=TG_2nt1 + 16G_2n + 10G _2—1 + 7).

(C) Z:zl G72k+1 = %(2G72n+1 — 11G72n — 35G72n71 — 2).

Taking V,, = H, with Hy = 3,H; = 2,H> = 10 in the last proposition, we have the following
corollary which presents sum formulas of Grahaml -Lucas numbers.

Corollary 6.5. For n > 1, Grahaml -Lucas numbers have the following properties.
(@ Yr  H r=34(-10H n 1 —8H n o—5H , 3—4).

(b) >p_ H ok = 4=(—TH 2011+ 16H 2, + 10H 2, 1 — 28).

() >r i Hooky1 = $(2H—2n+1 —11H_5, — 35H_2,_1 + 8).

From the above proposition, we have the following corollary which gives sum formulas of modified
Grahaml numbers (take V;, = F,, with £ =0, F1 =1, E> = 1).

Corollary 6.6. For n > 1, modified Grahaml numbers have the following properties.

(@ Yr  E_r=3(-10E_n_1 —8E_n_2—5E_,_3).
(b) Y Eok=4(—TE_2n41+16E 2, + 10E_3, 1 +9).
() Yr1E ok = i(2E72n+1 —11F 5, —35E_3,-1 —9).
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7 Matrices Related with Generalized Grahaml Numbers

Matrix formulation of W,, can be given as

W2 ros t\" [ W
Wesr | =1 0 0 wi |- (17)
W 0 1 0 Wo

For matrix formulation (17), see [20]. In fact, Kalman gave the formula in the following form

W 01 0\"/ Wy
Weir | =1 0 0 1 wh .
Wn +2 'S S t W2

We define the square matrix A of order 3 as:

2 35
A= 1 0 O
01 0
such that det A = 5. From (4) we have
Ve 2 3 5 Va1
Vaer |=( 1 0 0 Vi (18)
Va 0 1 0 Vi

and from (17) (or using (18) and induction) we have

Ve 2 3 5\"/ W
Vagr | =1 1 0 O i|.
Va 0 1 0 Vo
If we take V = G in (18) we have
Gn+2 2 3 5 Gn+1
Gny1 | =11 0 Gn (19)
Gn 0 1 0 Grn-1

We also define

Gn+1 3Gn +5Gn_1 5Gn
Bn - Gn 3Gn71 + 5Gn72 5Gn71
Gno1 3Gn_2+5Gn_3 5Gn_2
and
Vn+1 3V, +5Vu_1 5V
Cn = Vn 3Vn—1 + 5Vn—2 5Vn—1
Vi1 3Va—2+5V,_3 5V,_o

Theorem 7.1. For all integer m,n > 0, we have

(a) B, =A"
(b) C1A™ = A"Cy
(¢) Cnim = CrBm = By Ch.

Proof.
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(a) By expanding the vectors on the both sides of (19) to 3-colums and multiplying the obtained
on the right-hand side by A, we get

B, = ABn_1.
By induction argument, from the last equation, we obtain
B, =A""'B.
But By = A. It follows that B, = A™.
(b) Using (a) and definition of C1, (b) follows.
(c) We have
Vi 3Vao1+5Va_o 5Viha

2 3 5
ACn_1 = 1 0 O Vo1 3Viau_o+5V,_3 5V,_o
0 1 0 Voo 3V,_3+5V,_4 5V,_3
Vn+1 3Vn + 5Vn71 5Vn
Vo  3Vao14+58Vh_2 5V, = Ch.
Vi1 3Vu_o+5V,u_3 5V,_o

i.e. Cp = AC,_1. From the last equation, using induction we obtain C,, = A"~ 'C;. Now
Crgm = A" 1CL = AVTTA™C = AV 'CLA™ = CB

and similarly
Cn+m = Bmcn

Some properties of matrix A™ can be given as

An — 2An—1 +3An—2 + 5An—3

and
An+m — AnAm — AmAn
and
det(A™) =5"

for all integer m and n.
Theorem 7.2. For m,n > 0 we have

Vn+m - VnGm+1 + Vn—1(3Gm + 5Gm—1) + 5Vn—2Gm (20)

= VnGm+1 + (3Vn—1 + 5Vn—2) Gm + 5Vn—le—1 (21)

Proof. From the equation Cy 4, = Cp B, = B C), we see that an element of C), 4., is the product
of row C,, and a column B,,. From the last equation we say that an element of C,,+, is the product
of a row Cy, and column B,,,. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices Cy4+m and Cy, By,. This completes the proof.

Remark 7.1. By induction, it can be proved that for all integers m,n < 0, (20) holds. So for all
integers m, n, (20) is true.

Corollary 7.3. For all integers m,n, we have

Gn+m - GnG7n+l + anl(BGm + 5G7n71) + 5Gn72G7n7 (22)
Hogm = HnoGmi1 4+ Hyo1(3Gm + 5Gm—1) 4+ 5Hpn—2Gm, (23)
En+m - EnGm+1 + Enfl(SGm + 5Gm71) + 5En72G'm~ (24)
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8 Conclusions

In the literature, there have been so many studies of the sequences of numbers and the sequences of
numbers were widely used in many research areas, such as physics, engineering, architecture, nature
and art. We introduce the generalized Grahaml sequence (it’s three special cases, namely, Grahaml,
Grahaml-Lucas and modified Grahaml sequences) and we present Binet’s formulas, generating
functions, Simson formulas, the summation formulas, some identities and matrices for these sequences.
Generalized Grahaml sequence (and it’s three special cases: Grahaml, Grahaml-Lucas and modified
Grahaml sequences) can also be called (named) as generalized 3-primes sequence (3-primes, Lucas
3-primes and modified 3-primes sequences, respectively).

Competing Interests

Author has declared that no competing interests exist.

References

=

Bruce I. A modified Tribonacci Sequence. Fibonacci Quarterly. 1984;22(3):244-246.
Catalani M. Identities for Tribonacci-related sequences, arXiv:math/0209179; 2012.

S

[3] Choi E. Modular Tribonacci numbers by matrix method. Journal of the Korean Society of
Mathematical Education Series B: Pure and Applied Mathematics. 2013;20(3):207-221.

[4] Elia M. Derived sequences. The Tribonacci Recurrence and Cubic Forms, Fibonacci Quarterly.
2001;39(2):107-115.

[5] Er MC. Sums of fibonacci numbers by matrix methods. Fibonacci Quarterly. 1984;22(3):204-
207.

[6] Lin PY. De Moivre-type identities for the Tribonacci numbers. Fibonacci Quarterly.
1988;26:131-134.

[7] Pethe S. Some identities for Tribonacci sequences. Fibonacci Quarterly. 1988;26(2):144-151.

[8] Scott A, Delaney T, Hoggatt Jr. V. The Tribonacci sequence. Fibonacci Quarterly.
1977;15(3):193-200.

[9] Shannon A. Tribonacci numbers and Pascal’s pyramid. Fibonacci Quarterly. 1977;15(3):268-
275.

[10] Soykan Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics. 2019;7(1):74.

[11] Spickerman W. Binet’s formula for the Tribonacci sequence. Fibonacci Quarterly. 1982;20:118-
120.

[12] Yalavigi CC. Properties of Tribonacci numbers. Fibonacci Quarterly. 1972;10(3):231-246.

[13] Yilmaz N, Taskara N. Tribonacci and Tribonacci-Lucas numbers via the determinants of special
Matrices. Applied Mathematical Sciences. 2014;8(39):1947-1955.

[14] Howard FT, Saidak F. Zhou’s theory of constructing identities. Congress Numer. 2010;200:225-
237.

[15] Sloane NJA. The on-line encyclopedia of integer sequences.
Available:http://oeis.org/

[16] Kili¢ E, Stanica P. A matrix approach for general higher order linear recurrences. Bulletin of
the Malaysian Mathematical Sciences Society. 2011;34(1):51-67.

[17] Soykan Y. Simson identity of generalized m-step Fibonacci numbers. Int. J. Adv. Appl. Math.
and Mech. 2019;7(2):45-56.

56



Soykan; JAMCS, 85(2): 42-57, 2020; Article no.JAMCS.55255

oykan Y. Summing formulas for generalized Tribonacci numbers. arXiv: . v
18] Soykan Y. S i f las f lized Trib i b Xiv:1910.03490v1
[math.GM]; 2019.

[19] Soykan Y. Summing formulas for generalized Tribonacci numbers. Universal Journal of
Mathematics and Applications, Accepted.

[20] Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly.
1982;20(1):73-76.

© 2020 Soykan; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)

http://www.sdiarticle4.com/review-history /55255

57


http://creativecommons.org/licenses/by/2.0

	Introduction
	Generating Functions
	Obtaining Binet Formula from Generating Function
	Simson Formulas
	Some Identities
	Linear Sums
	Matrices Related with Generalized Grahaml Numbers
	Conclusions

