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Abstract 
 

In this paper, measure of slope rotatability for second order response surface designs using pairwise 
balanced designs under intra-class correlated structure of errors is suggested and illustrated with 
examples.  
 

 
Keywords:  Response surface design; slope-rotatability; intra-class correlated structure of errors; pairwise 

balanced designs; weak slope rotatability region. 
 

1 Introduction 
 
Response surface methodology is a collection of mathematical and statistical techniques useful for analysing 
problems where several independent variables influence a dependent variable. The independent variables are 
often called the input or explanatory variables and the dependent variable is often the response variable. An 
important step in development of response surface designs was the introduction of rotatable designs by Box 
and Hunter [1]. Das and Narasimham [2] constructed rotatable designs using balanced incomplete block 
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designs (BIBD). The study of rotatable designs mainly emphasized on the estimation of absolute response. 
Estimation of response at two different points in the factor space will often be of great importance. If 
differences at two points close together, estimation of local slope (rate of change) of the response is of 
interest. In the design of experiments for estimating the slope of the response surface, slope rotatability is a 
desirable property. Hader and Park [3] extended the notion of rotatability to cover the slope for the case of 
second order models. In view of slope rotatability of response surface methodology, a good estimation of 
derivatives of the response function is more important than estimation of mean response. Estimation of 
slopes occurs frequently in practical situations. For instance, there are cases in which we want to estimate 
rate of reaction in chemical experiment, rate of change in the yield of a crop to various fertilizer doses, rate 
of disintegration of radioactive material in animal etc. cf. Park [4]. Victorbabu and Narasimham [5,6] studied 
second order slope rotatable designs (SOSRD) using BIBD and pairwise balanced designs (PBD) 
respectively. Victorbabu [7,8] suggested SOSRD symmetrical unequal block arrangements (SUBA) with 
two unequal block sizes a review on SOSRD. To access the degree of slope rotatability Park and Kim [9] 
introduced a measure for second order response surface designs. Park et.al [10] introduced measure of 
rotatability for second order response surface designs. Surekha and Victorbabu [11,12,13,14] studied 
measure of slope rotatability for second order response surface designs using central composite designs 
(CCD), BIBD, PBD and SUBA with two unequal block sizes respectively. 
 
Many authors have studied rotatable designs and slope rotatable designs assuming errors to be uncorrelated 
and homoscedastic. However, it is not uncommon to come across practical situations when the errors are 
correlated, violating the usual assumptions. Panda and Das [15] introduced robust first order rotatable 
designs. Das [16,17,18] introduced and studied robust second order rotatable designs. Das [19] introduced 
slope rotatability with correlated errors and gave conditions for the different variance-covariance error 
structures. Das and Park [20] introduced measure of robust rotatability for second order response surface 
designs. To access the degree of slope rotatability for correlated errors a new measure for second order 
response surface designs was introduced by Das and Park [21]. Rajyalakshmi and Victorbabu [22,23] 
studied SOSRD under intra-class structure of errors using SUBA with two unequal block sizes and BIBD 
respectively. Rajyalakshmi et al. [24] studied SOSRD under intra-class structure of errors using PBD.   
Sulochana and Victorbabu [25-29] studied SOSRD under intra-class structure of errors using a pair of BIBD, 
a pair of SUBA with two unequal block sizes, partially balanced incomplete block type designs and measure 
of slope rotatability for second order response surface designs using CCD and BIBD under intra-class 
correlated structure of errors respectively. 
 
In this paper, following the works of Park and Kim [9], Das [19,30], Das and Park [21], Surekha and 
Victorbabu [13], Rajyalakshmi et al. [24] measure of slope-rotatability for second order response surface 

designs under intra-class correlated structure of errors using PBD for 6 15v   ( v number of factors) is 
suggested. 
 

2 Conditions for Slope Rotatability for Second Order Response Surface 
Designs for Uncorrelated Errors 

 
The second order surface model ( )D x i is 

 

2 ;10
1 1 1

v v v
y b b x b x b x x e Nii ij i jii ii i i j

           
   

                                                 (2.1) 

 

where xui  denotes the level of the ( 1,2,..., )thi i v factor in the ( 1,2,..., )th N    run of the 

experiment,  'e s  are correlated errors. Here ,0b ,bi  ,bii  bij  are the parameters of the model and y is 
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the observed response at the th design point. The design is said to be SOSRD if the variance of the 

estimate of first order partial derivative ( , ,..., )1 2y x x xv  with respect to each of independent variable xi  

is only a function of the distance 
22

1

v
s x

i
i


 


of the point ( , ,..., )1 2x x xv  from the origin (centre) of the 

design. Such a spherical variance function for estimation of slopes in the second order response surface is 
achieved if the design points satisfy the following conditions  
 

1. 1 32 4   0; for any  odd and 4
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x x x x ii i ii i
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                                                                                        (2.2) 

 

 
where c,  and 4 2  are constants. 

 
The variances and covariances of the estimated parameters are 
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2
2,0 2[ ( 1) ]

4 2

Cov b b
ii N c v v

 

 

 
 
 
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22
4 2,

2( 1) ( 1)4 4 2

Cov b bii ii c N c v v

 

  

 
 
 
 
 
 
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                                                                                  (2.3) 

 
and other covariances are vanish. 
 

3 Second Order Response Surface Designs with Correlated Structure of 
Errors (cf. Das [19,30], Das and Park [21]) 

 
The second order surface model ( )D x i is 

 

2 ;10
1 1 1

v v v
y b b x b x b x x e Nii ij i jii ii i i j

           
   

                                                  (3.1) 

 

where xui  denotes the level of the ( 1,2,..., )thi i v factor in the ( 1,2,..., )th N    run of the 

experiment,  'e s  are correlated errors. Here ,0b ,bi  ,bii  bij  are the parameters of the model and y is 

the observed response at the th design point. 

 

3.1 Conditions for slope-rotatability for second order response surface designs with 
correlated errors  

 
Following Das [19,30], Das and Park [21], the necessary and sufficient conditions for slope-rotatability for 
second order model with correlated errors are as follows. 
 
The estimated response at xi is given by 

20
1 1 1

v v v
y b b x b x b x xii ij i jiiii i i j


    
      

   
                                                                               (3.2) 

 
For the second order model as in (3.2), we have  
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                                                                                                      (3.3) 
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The variance of estimated first order derivative with respect to each independent variable xi as in (2.4) will 

be a function of 
22

1

v
s x

i
i

 
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 if and only if, 

 

1) .. 0; 1 , 0; 1 , ,  i iji ii j v j j v i j           
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ij ij i j j v
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
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3) . constant; 1i i i v     

4) . constant; 1ii ii i v     

5) . constant; 1 , andij ij i j v      

6) 
1 .. ; 1
4

ij ijii ii i j v                                                                                                                  (3.5) 

 
The following are the equivalent conditions of (1) to (5) in (3.5) for slope rotatability in second order 
correlated errors model (3.2) 
 

1)*      (i) =0; 1 ;0. 0. j l vj jl      

 (ii) 0; 1 , , ;. i j v i ji j      

 (iii) a) 0; 1 , ;. i j vii j     

b) 0; 1 , ;. i j l vi jl      
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c) 0; 1 , , ( , ) ( , ). i j l v j l i jii jl       

d) 0; 1 , l , , ( , ) ( , ). i j t v i j l tij lt       

 2)* (i) constant= , say;1 i0. 1a vjj     
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1
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     
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2

constant= , say;1. e i vii ii f
 

 
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 
 

3)*   (i) constant= , say;1 , , . e i j v i jii jj      

 (ii) 
1

constant= , say;1  <. i j vij ij f
                                                                                                  (3.6) 

 

where , , , , 1a g f e   are constants. 

 
The variances and covariances of the estimated parameters of the model (3.2) for the slope-rotatability are as 
follows: 
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 
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where 
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00 1
B e v e va

f
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     
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and the other covariances are zero. 
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An inspection of the variance of 0b


shows that a necessary and sufficient condition for the existence of a 

non-singular second order designs 0.B   
 

4)*  2 2{ ( ) ( 1) }  >0.
00 1

B e v e va
f

 
 

     
 

                                                                                       (3.8) 

 

For the second order slope rotatability with correlated errors,  
1 1 ..( ) ( ) i.e., .
4 4

ijijiiiiV b V b
ii ij

 
 

            (3.9) 

 
On simplification of (2.9) using (2.7), we get, 
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From (3.4), using slope rotatability conditions as in (3.6) and (3.7), we derive 
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 

                                                                                        (3.11) 

 

where 2 2 and ,  are as in (3.7).
1

v
s x g fii

 
  

 
cf. Das [19,30], Das and Park [21] 
 

4 Intra-class Correlated Structure of Errors (cf. Das [16,19,30]) 
 
Intra-class structure is the simplest variance-covariance structure which arises when errors of any two 
observations have the same correlation and each has the same variance. It is also known as uniform 
correlation structure.  
 

Let  is the correlation between errors of any two observations, each having the same variance 2.  Then 

intra-class variance covariance structure of errors given by the class: 
 

2 -1( ) (1 ) : 0, ( -1) 1 .0 ( )W W D e I E NN N NN N     
   
     

           
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Here IN  denotes an identity matrix of order N and EN N
is a N N matrix of all elements1. 

 
It was observe that, 
 

1 2( ) ( )0 0 0W I EN N NN N
     

  
      
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1 ( -1) 1,  and ( -1) .0 0(1- ){1 ( -1) } (1- ){1-( -1) }

N N
N N
   

   
   


  

 
(cf. Das [16,19,30]) 
 

4.1 Conditions of slope rotatability for second order response surface designs under 
intra-class correlated structure of errors (cf. Das [19,30]) 

 
From (3.6), the necessary and sufficient conditions for the second order slope rotatability under the intra-
class structure after some simplifications turn out to be 
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                                                                       (4.1) 

 
The parameters of second order slope rotatable design under intra-class structure are as following 
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where 3 , ,  and 2 4c       are constants.  

 

Note that if  0,   (i.e. when errors are uncorrelated and homoscedastic) the conditions (4.1) and (4.2) 

reduce to 
 

I*:   1 32 4   0; for any  odd and 4
1 12 3 41

N N
x x x x ii i ii i

i

  
 

  


  
 

 

 

II*:     (i) 
2 constant= ; 1 ; and2

1

N
x N i v

i





  


  

          (ii) 
4 constant= ; 14

1

N
x cN i v

i





  


 

III*:   
2 2 constant ; 1 , , .4

1

N
x x N i j v i v

i j


 


    


                                                                   (4.3) 

 
Note that (I), (II) and (III) as in (4.3) are second order slope rotatable conditions when errors are 
uncorrelated and homoscedastic. 
 
Using (4.2), the expression  
 

2 2{ ( 1) }00 1
e v e va

f
 

  
  
  

  

      simplifies to 

 

2 2 2{ ( 1)} {1 ( 1) } { ( 1)} .4 2 22{1 ( 1) }

N c v N N v N vN
N

     
 

 
 
 

       
 

 

 
 The non-singularity condition (3.8) the intra-class structure leads to 
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2 2 2{ ( 1)} {1 ( 1) } { ( 1)} 04 2 2
c v N N v N vN      

 
 

                                                           (4.4) 

where 3 .c     

 
On simplification of equation (3.10) by using (4.2), we get,  
 

22 2 (1 ){1 ( 1) }3 4 224
{1 ( 1) } {1 ( 1) )2 2 4{1 ( 1) }3 44 2

(1 ) 2 2{1 ( 1) }
4 2( 2)

{1 ( 1) }
4

2 2[{1 ( 1) } ] {1 ( 1)4 2 4( 2) ( 1)
(1 )

NN N N
N v

N NN N N

N N N
v

N

N N N N N
v v

     

       


   

 

   



 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

     


  

 
 

    
   



2 2} 4 2
{1 ( 1) }4

2 24( 1) {1 ( 1) } 42 2 2 0.
2 {1 ( 1)4

N N

N N

v N N N
N

N N

   

 

   


 

 
 
 
 
  

 
 
 
 
  



 

    
 

 
    

 (4.5) 

 
 (cf. Das [19]) 
 

 For  
0,   (i.e. when errors are uncorrelated and homoscedastic) (4.5) becomes 

 

2 2(5 ) ( 3) ( 5) 4 04 2
v c c v c    
     

                                                                                               (4.6)  

 
above equation (4.6) is equal to slope rotatability for second order response surface designs with errors are 
uncorrelated and homoscedastic(cf. Victorbabu and Narasimham [5]) 
 

4.2 Slope rotatability for second order response surface designs under intra-class 
correlated structure of errors using PBD (cf. Rajyalakshmi et al. (2020)) 

 
Following the works of Hader and Park [3], Victorbabu and Narasimham [5], Das [19,30], Rajyalakshmi et 
al. [24], the method of slope rotatability for second order response surface designs under intra-class 

correlated structure of errors using PBD is given below. Let 1 1
1N

 
 
 
 
 

  


 be correlation between 

errors of any two observations, each having the same variance 2.  
 

Pairwise balanced designs: The arrangement of v treatments in b blocks will be called a PBD of index   

and type ( , , , ..., )1 2v k k km  if each block contains , , ...,1 2k k km  treatments ( , )k v k ki i j   and each 

pair of distinct treatments occurs in exactly   blocks of size ( 1,2,..., )k i mi   then 
1

m
b bi

i
 


and 

( 1) ( 1).
1

m
v v b b k k

ii i
i

    

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Let  ( , , , , , ..., , ),1 2v b r k k km   be an equi-replicated PBD, max( , , ..., )1 2k k k km , Let ( )2t k  

denote a fractional replicate of  2k  in ±1 levels, in which no interaction with less than five factors is 

confounded. [1 ( , , , , , ..., , )]1 2v b r k k km   denote the design points generated from the transpose of 

incidence matrix of PBD.  ( )[1 ( , , , , )]2t kv b r k   are the ( ) 2t kb   design points generated from PBD 

by ‘multiplication’ (Raghavarao, 1971).   1,0,0,...,0 2a  denote the design points generated from 

 ,0,0,...,0a  point set, and  denotes combination of the design points generated from different sets of 

points. 0n
 
denote the number of central points.  The total number of factorial combinations in the design 

can be written as 2 .
0

N bF v n    Here 
( )

2 .
t k

F    

 

  Result (4.1): For the design points, 1 2
1[1- ( , , , , ,..., , )]   ( ,0,0,....0)2   ( )  0mv b r k k k F U a U n

 
 
will give   a v-dimensional SOSRD under intra-class correlated structure of errors using PBD in 

2
0

N bF v n    design points, where 2a  is positive real root of the fourth degree polynomial equation, 

 

        

         

     

     

  

8 6

2 2 4

2 2

2 2 2

8 - 4 1 ( 1) 1 ( 1) 8 1 ( 1) 1 ( 1)

2 12 - 2 - 4 16 - 20 4 1 ( 1) 1 ( 1)

4 16 - 20 1 ( 1) 1 ( 1)

5 - 9 6 - - 1 ( 1)

4 - 5 1 ( 1)

v N N N a vrF N N a

vr F v r N v vr F N N a

vr v r N F N a

v v r r N NF

vr v N

   

    

  

  

  

               

          

      
 

    
  

      2 31 ( 1) 0N r F   
  
Note: Values of SOSRD under intra-class correlated structure of errors using PBD can be obtained by 
solving the above equation. 
 

5 Measure of Second Order Slope Rotatability for Correlated Structure 
of Errors (cf. Das and Park [21]) 

 
Following Das and Park [21], equations (3.5), (3.6) and (3.7) give necessary and sufficient conditions for a 
measure for any general second order response surface designs with correlated errors. Further we have 
 

 eual for all ,ii i   

.  eual for all ,ii ii i   

.  eual for all , , where ij ij i j i j   . . .. = = = =0  for all , and for all i ij ij ij ij ili ii i j l          (5.1) 

 

Das and Park (2009) proposed that, if the conditions in (3.5) together (3.6), (3.7) and (5.1) are met, ( )M Dv
is the proposed measure of slope rotatability for second order response surface designs for any general 
correlated error structure.  



 
 
 

Beeraka and Re; AJPAS, 10(2): 13-32, 2020; Article no.AJPAS.62885 

 
 
 

24 
 
 

1
( )

1 ( )
M Dv

Q D
v




 
2

1 .where ( ) ( 2)( 4) ( )
4 22( 1) 1

v a ai i iQ D v vv vv i
 




 

  
  
   


      

                         

2 2
4 .2 .( ) 2 4

( 2) 1 1 i=1; j i

v v va aij ijii ii i ia ai v vv v i i
 

 
    
    
       
  

          
 

 .. 2 24( 4) 4( ) ( )
1;

v i iji iiv
j j i

 
 
 
 
 
 

   
 

 

. .2 24 4 ( ) ( )
1; ,1 ;

v vv ij ij ij il

j j i j l ii j l
 









 
    
     

                                                                              (5.2) 

 

here 
1 .

1

v i i
v i

  


,  . 24 ( )  (1 )
1;

v ij ijiia i vi j j i
    

 
 and 

1 .
1

v
a aiv i
 


 

 

It can be easily shown that ( )Q Dv in equation (4.2) becomes zero for all values ,  if and only if the 

conditions in equations (4.1) hold. 

 

Further, it is simplified to 
21

( ) 4 ( ) ( ) .
4

Q D V b V bv ii ij

  
  

                                                                (5.3) 

 
Note that 0 ( ) 1,M Dv  and it can be easily shown that ( )M Dv  is one if and only if the design is slope 

rotatable with any correlated error structure for all values of ,  and ( )M Dv  approaches to zero as the 

design ‘ D ’ deviates from the slope-rotatability under specified correlated error structure. 
 

6 Measure of Slope Rotatability for Second Order Response Surface 
Designs under Intra-class Correlated Structure of Errors Using 
Pairwise Balanced Designs  

 
In this paper, the degree of slope rotatability for second order response surface designs under intra-class 

correlated structure of errors  0 0.9  
 
 

   using pairwise balanced designs for 6 15v    ( v  number 

of factors) is suggested. 
 
Following Park and Kim [9], Das and Park [21], Surekha and Victorbabu [13], the proposed measure of 
slope-rotatability for second order response surface designs under intra-class correlated structure of errors 
using PBD is given below. 
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Let ( , , , , , ..., , )1 2v b r k k km   denote a PBD. For the design points, 

1[1- ( ,  ,  ,  ,  ,  ..., ,  )]   ( ,0,0,....0)2   ( )  01 2
v b r k k k F U a U n

m
 will give slope rotatability for 

second order response surface designs under intra-class correlated structure of errors using PBD in 

2  0N bF v n   design points. For the design points generated from PBD, equations in (3.1) are true.
 

Further, from equations in (3.1), we have, 
 

   (I)   
2 22   

21

N
x rF a Ni 

  


 

  (II)  
4 42  

41

N
x rF a cNi 

  


 

 (III)
2 2

4
1

N
x x F N

i j
 

 


 
                                                                                                                (6.1) 

 
Measure of slope rotatability of second order response surface designs under intra-class correlated structure 
of errors using PBD can be obtained by  
 

1
( )

1 ( )

21
( ) 4 ( ) ( )

4

2
.1 .          4 -

4

2
2(1 )1

          4
4

M Dv
Q D

v

Q D V b V bv ii ij

ij ijii ii

G
F



 


 






  
  

 
  

 

 
  
 
 

                                                                                                           (6.2) 

 

 

 
   
   

.  ( )

4 2 2 2 42 ( ) 2 ( 1) 4 41-
              

4 4 2 2 2 4( - ) 2 ( ) 2 ( ) 4 4

ii iiwhere G V bii

N r F a v N F r rFa a

F r a N r F a v N F r F rFa a



   

  

 

       
   

        

 

 

By substituting (3.2) and (5.1) in ( )iiV b  of (3.7) we get above G value. 

 

If ( )M Dv  is one if and only if the design  ‘ D ’ is slope rotatable under intra-class  correlated  structure of 

errors using PBD for all values of ,  and ( )M Dv  approaches to zero as the design ‘ D ’ deviates from the 

slope-rotatability under intra-class correlated structure of errors using PBD. 
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Example: We illustrate the method of measure of slope-rotatability for second order response surface 
designs under intra-class correlated structure of errors with the help of PBD 

( 6, 7, 3, 3, 2, 1)1 2v b r k k       .  

 

The design points, 
3 1[1- (6,7,3,3,2,1)]2   ( ,0,0,....0)2   ( 1)  0U a U n  will give a slope rotatability 

for second order response surface designs under intra-class correlated structure of errors using PBD in N = 
69 design points for 6 factors. From equations (5.1), we have,  
 

(I) 
2 224 2   

21

N
x a Ni 

  


 

(II)  
4 424 2  

41

N
x a cNi 

  


  

(III) 
2 2 8 4

1

N
x x N

i j


 


 


                                                                                                            (6.3) 

 

From (I), (II) and (III) of (6.3), we get 

2

2

24 2
,

69





  4

8

69
   and 

424+2
c= .

8


 Substituting 2 , 4

 

and c in (4.5) and on simplification, we get the following biquadratic equation in
2a .  

 

       

       

     

8 61  68  276 1  68 1  68  1152 1  68

2 1  68  6880 1  68

2
48

246912 6141  68 1  68

 1  68  38684 1  68 1

4

52992   68   0

a a

a a

   

   

  

 
  

 
  

 
  

     

     

     

                                (6.4)  

  

equation (6.4) has only one positive real root for all values of 
2 4.5314a   This can be alternatively 

written directly from result (4.1). Solving (6.4), we get 2.1287a   From (6.2) we get ( ) 0Q Dv  , 

  1vM D   for all values of 
1

( 0.9).
1N

   


  

Suppose if we take 1.6a   instead of taking 2.1287a   for the above PBD we get   

  0.0284,Q Dv  then   0.9723 (taking 0.1)M Dv   . Here  M Dv  deviates from slope 

rotatability for second order response surface designs under intra-class correlated structure of errors using 
PBD.  
 

Table 1, gives the values of ( )M Dv  for second order rotatable designs under intra-class correlated structure 

of errors using PBD for (0 0.9)    and 6 15v   ( v number of factors). 

 

6.1 Weak slope rotatability region for correlated errors cf. Das and Park [21] 
 
Following Das and Park [21], we also find weak slope rotatability region (WSRR) for second order response 
surface designs under intra-class correlated structure of errors using PBD. 
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( ) ,M D dv 
 

 

( )M Dv  involves the correlation parameter W  and as such, ( )M D dv   for all  is too strong to be 

met. On the other hand, for a given d , we can find range of values of      for which ( ) .M D dv   Das and 

Park (2009) call this range as the weak slope rotatability region (WSRR(R ( ))( )D d   of the design ‘ D ’. 

Naturally, the desirability of using ‘ D ’ will rest on the wide nature of (WSRR(R ( ))( )D d   along with 

its strength d . Generally, we would require ‘ d ’ to be very high say, around 0.95 (cf. Das and Park [21]). 
 

Table 2, gives the values of weak slope rotatability region (WSRR(R ( ))( )D d   for second order slope 

rotatable designs under intra-class correlated structure of errors using PBD for (0 0.9)    and 

6 15v   ( v number of factors) respectively. 
 

7 Discussion 
 
In this method, we obtain designs with fewer number of design points. The implications of fewer number of 
design points leads to effective and reduced cost of experimentation.

 

Here, we may point out this measure of 
slope rotatability for second order response designs under intra-lass correlated structure of errors using PBD 

has only 69 design points for v = 6 ( 6, 6, 3, 3, k 2, 1)1 2v b r k        factors, whereas the 

corresponding measure of slope rotatability for second order response designs under intra-class correlated 

structure of errors using CCD (v =6) and BIBD ( 6, 15, 5, 2, 1)v b r k       need 45 and 73 design 

points respectively. 
 
For v = 10 (v=10,b=11,r=5, k1=5, k2=4, λ=2)  factors, this method needs 197 design points whereas the 
corresponding measure of slope rotatability for second order response designs under intra-class correlated 
structure of errors using CCD (v = 10) and BIBD (v=10,b=45, r=9, k=2, λ=1),  need 149 and 201design 
points respectively. 

 

Table 1. Values of ( )'M D sv for second order slope rotatable designs under intra-class correlated 

structure of errors using PBD for (0 0.9)    and 6 15v   ( v number of factors) 

 

1 2 2, *( 6,  6, 3,  3, k 1), 69,  2.1287v b r k N a        

      ρ 

  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9773 0.9815 0.9853 0.9887 0.9917 0.9942 0.9963 0.9979 0.9991 0.9998 
1.3 0.9699 0.9756 0.9806 0.9851 0.9889 0.9923 0.9951 0.9972 0.9987 0.9997 
1.6 0.9661 0.9724 0.9780 0.9831 0.9875 0.9913 0.9944 0.9968 0.9986 0.9996 
1.9 0.9937 0.9949 0.9959 0.9959 0.9977 0.8884 0.9989 0.9994 0.9997 0.9999 
2.1287* 1 1 1 1 1 1 1 1 1 1 
2.2 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.5 0.9959 0.9967 0.9974 0.9979 0.9985 0.9989 0.9993 0.9996 0.9998 0.9999 
2.8 0.9924 0.9938 0.9951 0.9962 0.9972 0.9981 0.9988 0.9993 0.9997 0.9999 
3.1 0.9899 0.9918 0.9936 0.9951 0.9964 0.9974 0.9984 0.9991 0.9996 0.9999 
3.4 0.9884 0.9906 0.9925 0.9943 0.9958 0.9971 0.9981 0.9989 0.9995 0.9999 
3.7 0.9873 0.9897 0.9918 0.9938 0.9954 0.9968 0.9979 0.9988 0.9995 0.9998 
4 0.9866 0.9891 0.9914 0.9934 0.9951 0.9966 0.9978 0.9988 0.9995 0.9999 

Note 1: Measure of slope rotatability for second order response surface designs under intra-class correlated structure of errors using PBD is calculated by 
using the formulae (5.2) (Details were provided in Section 6.) 
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2 3= = *(v=8, b=15, r=6, k=4, k 3, k 2, λ=2), N=257, a = 2.7066  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9981 0.9985 0.9988 0.9991 0.9993 0.9995 0.9997 0.9998 0.9999 0.9999 
1.3 0.9979 0.9983 0.9986 0.9989 0.9992 0.9995 0.9997 0.9998 0.9999 0.9999 
1.6 0.9977 0.9981 0.9985 0.9989 0.9992 0.9994 0.9996 0.9998 0.9999 0.9999 
1.9 0.9982 0.9986 0.9989 0.9991 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 
2.2 0.9993 0.9994 0.9996 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 
2.5 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.7066* 1 1 1 1 1 1 1 1 1 1 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.1 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.4 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9995 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 

 

1 2 3=3 = *(v=9, b=11, r=5, k =5, k , k 2, λ=2), N=195, a = 2.8386  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9968 0.9974 9980 0.9985 0.9989 0.9992 0.9995 0.9997 0.9998 0.9999 
1.3 0.9968 0.9974 0.9979 0.9985 0.9988 0.9992 0.9994 0.9997 0.9998 0.9999 
1.6 0.9967 0.9974 0.9979 0.9984 0.9988 0.9992 0.9995 0.9998 0.9999 0.9999 
1.9 0.9967 0.9973 0.9979 0.9984 0.9988 0.9992 0.9995 0.9997 0.9999 0.9999 
2.2 0.9980 0.9984 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9999 0.9999 
2.5 0.9996 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1 
2.8386* 1 1 1 1 1 1 1 1 1 1 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.4 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9996 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 

 

1 2 3=3 = *(v=10, b=11, r=5, k =5, k , k 2, λ=2), N=197, a = 2.8928  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.3 0.9968 0.9974 0.9979 0.9985 0.9988 0.9992 0.9994 0.9997 0.9998 0.9999 
1.6 0.9967 0.9974 0.9979 0.9984 0.9988 0.9992 0.9995 0.9998 0.9999 0.9999 
1.9 0.9967 0.9973 0.9979 0.9984 0.9988 0.9992 0.9995 0.9997 0.9999 0.9999 
2.2 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.5 0.9996 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1 
2.8386* 1 1 1 1 1 1 1 1 1 1 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.4 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9996 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 

 

1 2 3 4= = = *(v=12, b=16, r=6, k =6, k 5, k 4, k 3, λ=2), N=537, a = 3.1055  

      ρ 

  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.3 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.6 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.9 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.2 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.5 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1 1 1 
3.1055* 1 1 1 1 1 1 1 1 1 1 
3.4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1 2 3 4= = = *(v=13, b=16, r=6, k =6, k 5, k 4, k 3, λ=2), N=539, a = 3.1416  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1  0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.3 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.6 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.9 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.2 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.5 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1 1 1 
3.1416* 1 1 1 1 1 1 1 1 1 1 
3.4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

 

1 2 3 4= = = *(v=14, b=16, r=6, k =6, k 5, k 4, k 3, λ=2), N=541, a = 3.1847  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.3 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.6 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.9 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.2 0.9995 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 
2.5 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1 
3.1847* 1 1 1 1 1 1 1 1 1 1 
3.4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1 2 3 4= = = *(v=15, b=16, r=6, k =6, k 5, k 4, k 3, λ=2), N=543, a = 3.2360  

      ρ 
  a  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.3 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
1.6 0.9995 0.9996 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 
1.9 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 
2.2 0.9991 0.9993 0.9994 0.9995 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 
2.5 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 
2.8 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.2360* 1 1 1 1 1 1 1 1 1 1 
3.4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
Note 2: Here * a indicates that the values of slope rotatability for second order response surface designs under intra-class correlated structure of errors 

using PBD 

 

Table 2. Values of WSRRs
R ( )(0.95)D 

 for second order slope rotatable designs under intra-class 

correlated structure of errors using PBD for (0 0.9)    and for 6 15v   ( v number of factors) 
 

            a  1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.1 

(6, 7, 3, 3, 2,  1) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(8, 15, 6, 4, 3, 2, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(9, 11, 5, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(10, 11, 5, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(12, 16, 6, 6, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(13, 16, 6, 6, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(14, 16, 6, 6, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
(15, 16, 6, 6, 5, 4, 3, 2) 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 0-0.9 
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Note 3: Measure of weak slope rotatability region for second order response surface designs under intra-class correlated structure of errors is taken from 
the Table 1 using the formulae 

( )  (where =0.95)M D d dv   (Details were given in Section 6.1.) 

 

8 Conclusion 
 
In this paper, the measure of slope rotatability for second order response surface designs with intra-class 
correlated structure of errors using PBD is suggested. The degree of slope rotatability of the given design 

calculated for different values of (0 0.9)    for 6 15v   ( v number of factors). 
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