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Hand Gesture Recognition of Methods-Time 
Measurement-1 Motions in Manual Assembly Tasks Using 
Graph Convolutional Networks
Alexander Riedel , Nico Brehm, and Tobias Pfeifroth

Department of Industrial Engineering, Ernst-Abbe University of Applied Sciences, Jena, Germany

ABSTARCT
Gesture recognition is gaining popularity in many fields, includ
ing gesture control, robotics, or medical applications. However, 
the technology is barely used in industrial manufacturing pro
cesses due to high costs, a time-consuming configuration, and 
changes in the workflow. This paper proposes a minimally inva
sive approach to recognize workers' hand motions in manual 
assembly tasks. The novelty of this approach is the use of only 
one camera instead of any other sensors and the application of 
state-of-the-art graph neural networks. The method relies on 
monocular RGB video data to predict the basic motions of the 
industry standard motion-time system Methods-Time 
Measurement-1. Our two-stage neural network composed of 
hand key point extraction and adaptive graph convolution deli
vers accurate classification results in real-time. To train and 
validate the model, we created a dataset containing 22,000 
frames of real-world assembly tasks. The data produced by this 
method in a production line can be used for motion time 
verification, assembly-line design, or assembly cost estimation. 
In a use-case study, we show that the proposed approach can 
generate Methods-Time Measurement analysis tables. These 
have so far only been accurately created by human experts. 
Source code: https://github.com/alexriedel1/Hand-Gesture- 
Recognition-in-manual-assembly-tasks-using-GCN
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Introduction

The key challenge for manufacturing companies is a globally continuing trend 
for shorter life cycles and highly customized products (Stump and Badurdeen 
2012). To meet this challenge, assembly lines need to be complex but also fast 
to be planned and established (Manns, Otto, and Mauer 2016). In highly 
customized production environments, manual product assembly is often still 
the most popular choice when determining the level of automation (Salmi 
et al. 2016).
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Studies find that manual assembly processes take up to 50% of the total 
production time and 20% of the total manufacturing cost in industrial man
ufacturing (Fan and Dong 2003). To ensure a high productivity, correct cost 
estimation and workers’ health, a well-designed and well-planned assembly 
line is essential. Once in production use, the line might be monitored, eval
uated, and further improved.

Getting access to data from manual production lines would not only improve 
the planning processes but also deliver useful insights for quality control, 
logistics planning, and management decisions. Key information derived from 
manual assembly lines are the types of performed motions, their duration, and 
their sequence. To not only use these data in the planning process, but also 
during production, the data need to be acquired in real-time, at a certain level of 
accuracy, and without intervening in the workers’ assembly process.

In particular, these data contain the durations for specific motion tasks in 
a manual assembly line. The most widely used system for the classification of 
motion sequences and their duration uses the five basic motions grasp, move, 
position, release, and reach (Maynard, Stegemerten, and Schwab 1948). The 
corresponding motion duration is measured and defined by human experts for 
different kinds of distances, difficulty levels, and object shapes. In the manual 
assembly industry, it is desirable to automate the process of (1) identifying 
a basic motion and (2) measuring the motion duration.

There is a broad variety of motion capturing technology available, ranging 
from inertial motion units (Roetenberg, Luinge, and Slycke 2009), smartphone 
sensors (Qi, Hang, and Aliverti 2020), electromagnetic fields, electromyo
graphic signals (Su et al. 2020) or depth cameras (Shafaei and Little 2016). 
Despite giving accurate results, wearable sensors are invasive and interfere 
with the workplace or disrupt the workflow. Also, installation and usage might 
not be trivial and cost intensive. Camera solutions are available at low cost, 
simple installation, and without interfering with the worker or the workplace. 
However, their performance heavily relies on the used data processing algo
rithms (Menolotto et al. 2020). This work provides a deep learning-based 
method to accurately predict the basic manual assembly motions from 
a single RGB camera signal. To our knowledge, there is no procedure 
described in the literature that can accomplish this task.

We propose a two-stage neural network for predicting Methods-Time 
Measurement 1 (MTM-1) motions from monocular RGB-Video data in real- 
time (see Figure 1). The first stage is a lightweight hand-pose model to extract 
3D joint coordinates. These joints form a static hand graph, feeding a state-of- 
the-art spatio-temporal recurrent Graph Convolutional Network (GCN) for 
predicting motions from consecutive temporal signal frames. To train this 
neural network, we created and provide a dataset of roughly 21,000 frames 
containing manual assembly tasks that are labeled according to MTM-1 
motions.
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Time Studying in Assembly Processes

Time studies for measuring the production process can be divided into (1) 
stopwatch timing, (2) instantaneous observations, and (3) predetermined 
motion-time systems. Each of these depends on estimation, statistical tools 
and/or are affected by human factors (Polotski, Beauregard, and Franzoni 
2019). Studies prove that both the spatial (Agethen et al. 2016) and temporal 
(Almeida and Ferreira 2009; Baines et al. 2003) dimension of these methods 
show inconsistency between theoretical planning and real-world assembly.

Predetermined motion-time systems (PMTS) are used to provide standard 
target times for predefined assembly tasks. They are based on the fundamental 
assumptions, that a predetermined time value can be assigned to every basic 
motion and that the duration of all basic motions sums up to the complete 
process time (Genaidy, Mital, and Obeidat 1989). The most widespread PMTS 
include Methods-Time Measurement (MTM) (Maynard, Stegemerten, and 
Schwab 1948) and Maynard Operation Sequence Technique (MOST) 
(Zandin 2020), with MTM as the de-facto standard in western industrial 
countries (Bures and Pivodova 2015). In the MTM basic system MTM-1, 
assembly tasks are analyzed, structured, and dissected into sequences of five 
basic movements: grasp, move, position, release, and reach (see Figure 2). Each 
basic motion is assigned a specific duration, based on defined influence factors, 
e.g., distance, complexity, or physical effort (Bokranz and Landau 2012). The 
five MTM-1 motions make up 80–85% of human movements during an 
assembly task and can be composed to sequences of moves (e.g., “Grasp and 
Release” or “Put in Place”) for further analysis (Almeida and Ferreira 2009). 
Conducting a workplace planning using MTM-1 is a time-consuming task 
because every motion and its corresponding influence factor need to be 
determined by a qualified MTM expert (Bures and Pivodova 2015). The out
come of an MTM-1 workplace analysis is a table of the basic motions per
formed during an explicit task and their duration, as shown in Table 1. The 
motions are encoded as MTM codes that contain information about motion 
time influence factors like difficulty or distance. The time unit for measuring 
movements is referred to as Time Measuring Unit (TMU) with 1 

Figure 1. Two-stage approach of extracting hand key points and applying spatio-temporal 
adaptive graph convolution for predicting MTM-1 motions from live video data.
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TMU = 0.036 s. Predetermined motion-time systems mainly use TMU instead 
of seconds to avoid decimal places and keep the high accuracy. The use of 
TMU in this work is due to this convention. Gathering the MTM-1 motions in 
real-time during production is only viable through the use of technological 
solutions such as wired sensors, wireless sensors, or camera-based solutions 
(Fantoni et al. 2021).

Figure 2. The five Methods-Time measurement basic motions in the commonly used sequence.

Table 1. Generic MTM-1 analysis for one task, conducted by an MTM expert.
No. Basic motion MTM-Code TMU Time in s

1 Reach R 30 C 14.1 0.508
2 Grasp G 4 C 12.9 0.464
3 Move M 30 C 15.1 0.544
4 Position P 1 D S 16.0 0.576
5 Release RL 1 2.0 0.072
Total 60.1 2.164

The MTM-Code and the corresponding duration (TMU) is defined for every motion and 
distance by an international MTM consortium.

e2014191-1284 A. RIEDEL ET AL.



Recent Methods for Acquisition of Motion Data in Production

To identify, track, and monitor a worker’s position during assembly, there is 
a wide range of more or less invasive or costly solutions. Most of these can be 
classified into systems that involve (1) fixed sensors, (2) wearable sensors, (3) 
virtual reality, or (4) camera monitoring.

Fixed sensor (1) solutions are based on laser-barriers (Yin et al. 2019) or 
ultra-sonic sensors (Pham et al. 2007) to detect the motion in specified areas, 
e.g., grabbing into a laser-barrier equipped box. Physical motions can be 
observed in a direct way wherever a sensor is placed. The downsides of 
using fixed physical sensors are their high cost, their labor-intensive set-up, 
and their high grade of workplace invasiveness (Fantoni et al. 2021).

Wearable sensors (2) combine all kinds of motion identification systems that 
are attached directly to the worker or to the processed material. Wireless RFID 
tags can be used to allocate the worker’s or material’s position (Zhong et al. 
2013) from which motion data can be derived. By using wearable inertial 
measurement units (IMU) to directly access workers movements, the motion 
data can be enhanced (Fang and Zheng 2020). Despite being cheap and widely 
available, RFID sensors cannot be attached to every product and might interfere 
with the employee’s workflow when being worn directly. Similar to IMUs, Qi 
et al. propose a method to use smartphone sensors to predict 12 fine-grained 
classes of human activities (Qi, Hang, and Aliverti 2020). The work proves the 
superiority of deep neural networks over classic machine learning methods for 
activity recognition. Also, the use of smartphones gives a widely available and 
inexpensive alternative to industrial IMUs. Only whole-body activities are 
examined, leaving doubts that the method works for fine-grained hand gestures.

Hang Su et al. show an approach of surface electromyographic (EMG) 
signals, obtained by a wristband and labeled via depth-camera, to predict 
hand gestures (Su et al. 2020). The multi-channel EMG wristband provides 
data for accurately predicting 10 gestures.

The discussed wearable solutions provide accurate body pose or hand 
gesture prediction; however, they need to be attached to the human body 
and might interfere with the workers’ workflow.

Virtual or mixed reality solutions (3) have been extensively studied for the 
use of manual assembly verification (Gomes de Sá and Zachmann 1999; 
Chryssolouris et al. 2000; S. Li et al. 2009). They are proven to be suitable 
for virtual assembly simulations and deliver good approximations for assem
bly time studies. However, they are costly to implement, highly invasive and 
still show a low spread and a low expertise level in industrial environments 
(Masood and Egger 2019).

Camera-based monitoring systems (4) are a common method to ana
lyze and track shop-floor data about the worker in manufacturing envir
onments (Fang and Zheng 2020). Typically, those solutions rely on 
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motion tracking markers to extract positions from video data. These 
markers are either attached to the worker or to the workpiece 
(Puthenveetil et al. 2015; Wang, Ong, and Nee 2016). With the rise of 
low-cost depth cameras (RGB-D) like Microsoft® Kinect™ or Intel® 
RealSense™, marker-less camera motion monitoring became popular. 
Experimental setups using multiple RGB-D cameras have been success
fully used for reconstructing walking paths (Agethen et al. 2016) to 
compare planned and real paths in manual assembly lines. Rude et al. 
show the use of RGB-D cameras to distinguish assembly tasks like 
fetching, painting and loading in clearly defined environments (Rude, 
Adams, and Beling 2018). Other studies demonstrate the use of these 
cameras for predicting fine-grained, but very general worker motions 
like “jerky motions in x-axis” (Prabhu et al. 2016).

Ovur et al. propose an alternative camera method for hand pose estimation, 
based on multiple infrared “Leap Motion Controllers” (LMC) (Ovur et al. 
2021). The sensor fusion method, which incorporates multiple signal sources, 
reduces the risk of prediction failure due to occlusion. However, it remains 
unclear if LMCs are accurate enough to not only predict the hand pose as 
quaternions but also fine-grained gestures.

Depth-based camera methods such as LMC or RGB-D are crucial for 
estimating the exact position in a 3-dimensional space. For real-time hand 
gestures prediction though, true depth information may not be relevant 
and increases the computational cost, resulting in longer inference time.

The visual-only detection of the widely used and universally applicable 
MTM-1 motions has, to our knowledge, not yet been studied in the literature.

Many of the mentioned methods for predicting workers’ motions in assem
bly tasks rely on the use of Hidden-Markov-Models (HMM). HMM tend to be 
useful in static situations where clear, pre-defined assumptions about state 
transitions and only minor temporal relations between states exist (Rabiner 
1989). Neural networks, however, are capable of learning those assumptions, 
importance of far previous timesteps and other complex relations between 
features. When being trained on sufficient training data, neural networks are 
superior to HMM in terms of prediction accuracy (Tadayon and Pottie 2020; 
L. Liu, Lin, and Reid 2019).

Materials and Methods

Recently, deep neural networks have been widely investigated in general 
gesture and human action recognition, but merely in manual assembly motion 
prediction. Tran et al. present a method for extracting features from RGB 
videos via 2D convolutions followed by a temporal 1D convolution, resulting 
in a “(2 + 1)D” convolutional block (Tran et al. 2018). Min et al. propose to 
first extract temporal point clouds that are fed as features into a recurrent long 
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short-term memory sequence model (LSTM) to preserve more spatial features 
than from RGB data only (Min et al. 2020). Another feature representation 
method that has proven to be well applicable for action recognition tasks is 
based on human skeletal joints (Yan, Xiong, and Lin 2018). The main advan
tage over RGB data lies in the sparsity and compactness of such data, where 
only pose information is included. This results in robustness against noisy 
backgrounds, changing lightning conditions or bad camera positions. The 
gesture of a human hand, for example, can be represented as a sequence of 
3D coordinates of the hand’s skeletal joints. For gesture recognition, this 
information can be fed into an LSTM or other recurrent networks (J. Liu 
et al. 2017; P. Zhang et al. 2017). As human actions heavily rely on the spatial 
information between the skeletal joints and not only on the temporal informa
tion, standard recurrent networks only work to a certain extent. Spatio- 
temporal graph convolutional networks (ST-GCN) (Yan, Xiong, and Lin 
2018) have been the most promising approach to capture spatial and temporal 
relations between the joints and the sequences of joints. For this purpose, 
a skeleton graph is pre-defined, according to the natural human body struc
ture. This approach, however, shows several downsides. Defining the skeletal 
graph edges according to the body structure might be misleading as the GCN 
could gather more information from alternative connections. Fixing the graph 
over every GCN layer is counterintuitive to the fact that the neural network 
might learn different features in each layer. Predicting different classes of 
action might require different connections between the skeletal joint. To 
overcome these issues, Shi et al. propose a Two-Stream Adaptive GCN (2s- 
AGCN) with adaptive graphs and an attention mechanism (Shi et al. 2018). 
The graph topology is an optimized parameter in the network and unique for 
each layer, but also a residual branch to achieve stability in the network. The 
spatial and temporal dimension of a sequence of hand graphs is visualized in 
Figure 3, also displaying the adaptive importance of each node. The 2s-AGCN 
model was designed to work well on human body skeletal datasets like NTU- 
RGBD or Kinetics-Skeleton where it achieves state-of-the-art accuracy. We are 
aiming to use 2s-AGCN on MTM-1 skeletal motion data that show (1) much 
more fine-grained motions, (2) a low inter-class variance (3) a limited amount 
of available data and (4) a naturally imbalanced class distribution. To adapt the 
model to the new scope of application, several changes considering the 
architecture of the model, the underlying graph and the input features will 
be evaluated. To better understand how to implement the described methods 
in a real-world use case, each stage of the pipeline will be briefly explained.
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Key Point Extraction

To extract the hand key points coordinates from RGB video data, a pre-trained, 
ready-to-use solution is preferred. Most of the available methods rely on the use 
of convolutional neural networks and are trained on large amounts of data (Cao 
et al. 2021; Kreiss, Bertoni, and Alahi 2019). Due to its fast inference speed, high 
accuracy, and simple use, the framework chosen in this work is MediaPipe 
Hands (F. Zhang et al. 2020). It allows to extract 21 x-y-z hand key points, 
following the structure shown in Figure 3. The implemented SSD model 
achieves 95.7% accuracy for detecting palms and an MSE of 10.05 pixels for 
predicting the key points. With an inferencing time of 5.3 ms on an iPhone 11, it 
allows the use in real-time applications even on low-performance edge devices. 
The hand key point data was acquired via the Python API of MediaPipe Hands, 
using a minimum detection confidence of 0.4 and a minimum tracking con
fidence of 0.5 for tracking key points in consecutive frames.

Defining the Hand 2s-AGCN

Spatio-temporal GCNs for hand gesture recognition use an embedded 
sequence of joints and the corresponding adjacency matrix as input. The 
proposed AGCN is fed by a four-dimensional matrix in the shape of [N, C, 
T, V] where N denotes the batch size, C denotes the number of input features 

Figure 3. A sequence of hand graphs during a motion. The line width of the graph vertices denotes 
the learned joint importance of the adaptive GCN. Spatial and temporal convolution is performed 
on neighboring graph nodes, increasing the number of feature maps and decreasing the number 
of temporal columns.
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(x-y-z-coordinate), T denotes the input time steps and V denotes the graph 
vertices (joints). The adjacency matrix for AGCN is composed of three sub- 
matrices: (1) the inward-links starting from the wrist joint, (2) the outward- 
links pointing in the opposite direction, and (3) the self-links of each joint. 
Thus, the matrix is of the shape [V, V, 3], where V is 21 in this work.

The Hand-AGCN model used in this work is a stack of 7 AGCN blocks with 
increasing output feature dimensions. A preceding batch normalization layer 
is added for input data normalization. A global average pooling layer (GAP) 
followed by a fully connected layer (FC) maps the output features to the 
corresponding output classes. The model structure is shown in Table 2. One 
AGCN-block is composed of a spatial graph convolution followed by 
a temporal graph convolution with respective kernel sizes.

The adaptive spatial graph convolution layer uses a combination of both the 
provided adjacency matrix as well as parameterized and optimized adjacency 
matrices. Equation (1) represents the general formula to perform this adaptive 
spatial graph convolution. 

fout ¼
XKv

k
Wk�fin Ak þ Bk þ Ckð Þ (1) 

where Kv denotes the kernel size of the spatial dimension (set to 3 in this 
work), Wk represents the weight vector of the 1�1 convolution, fin is the input 
feature vector and Ak, Bk, Ck are the adjacency matrices used. The first matrix 
Ak is the originally provided adjacency matrix. Bk is a completely learnable, 
parameterized adjacency matrix, able to learn new connections. Ck is a data- 
dependent adjacency matrix, obtained by embedding the input features 
through a 1�1 convolutional operation and a softmax function. The spatial 
graph convolutional is followed by batch norm, a ReLU activation, and 
a dropout layer with 0.5 dropout rate. Consecutively, the temporal graph 
convolutional is performed as proposed by (Yan, Xiong, and Lin 2018), 

Table 2. Layers and dimensions of the implemented AGCN model.
Layer Input size Channels Temporal stride Output size

Input (32, 21, 3) (32, 21, 3)
Batch normalization
AGCN 1 (32, 21, 3) 64 1 (32, 21, 64)
AGCN 2 (32, 21, 64) 64 1 (32, 21, 64)
AGCN 3 (32, 21, 64) 64 1 (32, 21, 64)
AGCN 4 (32, 21, 64) 128 2 (16, 21, 128)
AGCN 5 (16, 21, 128) 128 1 (16, 21, 128)
AGCN 6 (16, 21, 128) 128 1 (16, 21, 128)
AGCN 7 (16, 21, 128) 128 2 (8, 21, 128)
Global average pool (8, 21, 128) (1, 128)
Fully connected (1, 128) 6 (1, 6)

The input vector is organized the following: (time steps, key points, features). The number of channels refers to the 
number of convolutional feature maps both in the temporal and spatial convolution. The temporal kernel stride is 
set to down sample and embed the temporal dimension.
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again followed by a batch norm layer and ReLU activation. Each of the AGCN 
blocks has a residual connection for stabilizing the training. See Table 3 for the 
AGCN layer summary. The implementation details of all layers and the model 
can be further investigated in the provided GitHub repository and can be 
found in (Shi et al. 2018).

The hand joint coordinates can be utilized to derive second-order informa
tion, i.e., the bone length. To benefit from this additional information, bone 
representations will be calculated and used as input features.

These bone representations are defined as vectors pointing from the 
source joint to the target joint. To keep information about the direction, 
a simple subtraction of the joint positions is performed rather than calcu
lating the actual distance. The bone that is connecting joints v1 and v2 is 
defined by e1;2 ¼ x1 � x2; y1 � y2; z1 � z2ð Þ. To not mix the information 
about joint coordinates and bone lengths as vertex features, two models 
will be trained separately. The joint-stream (J-Stream) and the bone-stream 
(B-Stream) predictions will be averaged for the final prediction score. This 
ensemble of models represents the 2-Stream AGCN architecture.

Hand Graph Modeling

The MediaPipe Hands key point extraction method predicts the x-y-z-coor
dinates of 21 hand joints; four joints per finger plus an additional wrist joint 
(Figure 4). For the definition of the underlying graph, each of the joints is 
connected to its natural neighbor, resulting in a graph of 21 vertices and 20 
edges. As Y. Li et al. 2019 propose, these might be too few connections for 
the fine-grained hand movements and the low inter-class variability of the 
MTM-1 motions. To obtain more semantic information in the hand graph, 
two types of additional joints were added, as displayed in Figure 4. The first 
type of added joints links the fingertips to the base of the right neighbor 
finger. The second type of additional joints links the fingertips to the middle 
segment of the same finger. These supplementary links help to retrieve more 
information about different states of the hand. The first type contains data 

Table 3. Details of the adaptive graph convolutional (AGCN) 
layer introduced in Table 3.

Layer Kernel size

Residual
Adaptive spatial convolution (1,1)
Batch norm + ReLU
Dropout
Temporal convolution (1,1) ⊕
Batch norm + ReLU

⊕ denotes the element-wise summation in the residual layer.

e2014191-1290 A. RIEDEL ET AL.



about the horizontal and vertical distance of two fingers and can therefore 
help to encode overlapping or spreading of two fingers. The second type 
encodes bending of the fingers and thus creates information about, e.g.,, 
grabbing motions. These additional links are applied to the J-Stream but also 
to the B-stream model. This will result in “pseudo-bones” that might carry 
important length information for some basic motions.

As the model adaptively learns the importance of links between features, 
unnecessarily introduced edges will vanish during the training process and 
meaningful edges will solidify. Thus, adding explainable links might not 
decrease the model’s prediction quality, whereas simply connecting every 
joint with all the others might overfit the model.

Two types of models are trained with one including the motion class 
“Release” and one excluding “Release.” Including “Release” in a model is 
theoretically necessary to predict all MTM-1 classes. For the practical use of 

Figure 4. Arrangement of the hand key points extracted by MediaPipe Hands. Solid lines denote 
the natural joint links. Dashed lines denote first type of additional links. Dotted lines denote 
the second type of additional links.
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the model, including “Release” is not found to be obligatory, as in practice, the 
duration associated with this motion is mostly set to be 0. By excluding this 
class, the accuracy of all other classes can be improved without affecting the 
practical usefulness of the model predictions. The prediction results of both 
models, however, will be presented.

MTM-1 Data Acquisition

The MTM-1 dataset was acquired performing a variety of one-handed 
manual assembly tasks under different workplace conditions. The work
piece as well as the components to be assembled were put in different 
positions to reflect various real-world situations. Single parts of diverse 
shapes, with diameters from 1 cm to 10 cm were assembled using different 
manual assembly techniques, like plugging, screwing, and placing. The 
assembly was performed by different people to capture a range of motion 
and assembly characteristics. The sequences were filmed from varying 
distances and angles, using a Microsoft LifeCam HD-3000 720p RGB 
webcam at 25 frames per second. The camera was mounted in different 
positions from 0.5 m to 1 m above the assembly station at angles ranging 
from 0° to 30°. Labeling the data was done manually per frame, using the 
five MTM-1 basic motions “Grasp,” “Release,” “Reach,” “Position” and 
“Move.” Frames without the presence of hands were labeled “Negative,” 
resulting in a total of six classes for the dataset. The motions can be well 
distinguished during a manual assembly task, e.g., “Reach” is the basic 
element when the purpose of motion is to move the hand to definite 
location. “Move” is the motion performed when an object is to be 
transported to a definite destination. “Grasp” is performed to secure 
control over an object. “Position” is the element employed to align and 
engage one object with another one. “Release” is associated with opening 
the fingers to break contact between hand and object. In real-life, the 
motions always appear in a certain order and hence single motions cannot 
be sampled without sampling the other motions. This explains the degree 
of class imbalance that can be found in the dataset.

Results

Dataset

The training dataset comprises 11 videos with a total of 17,535 frames. The 
categories are distributed as of the following: “Grasp” 4,863, “Position” 4,293, 
“Move” 3,579, “Reach” 2,863, “Release” 682, “Negative” 1,255 frames. The 
validation dataset comprises three videos with a total of 4,241 frames. The 
categories are allocated as of the following: “Grasp” 919, “Position” 1,359, 
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“Move” 881, “Reach” 716, “Release” 95, “Negative” 271 frames, resembling 
a natural distribution for manual assembly tasks. To obtain a meaningful train 
and test split, complete assembly videos are used for validation showing 
different tasks than the training data.

The video footage was processed using the MediaPipe Hands Python API to 
obtain the 21 x-, y- and z-hand joint coordinates per frame. The processed 
dataset will hence be referred to as hand graph dataset. During the training 
process, the hand graph data was augmented by generating vertically, hori
zontally, and both ways flipped graphs of the original data. Doing so, the 
training dataset could be enlarged four times and the resulting model will be 
invariant to flipping and more robust.

Training Details

The experiments were performed using the PyTorch framework (Paszke et al. 
2019). The training and validation data is organized as a [N, C, T, V] tensor, 
with the batch size N, the input features C, the consecutive frames (time steps) 
T and the hand vertices V. For the training process, we set N to be 64 and C to 
be 3 (x-y-z coordinates). The batch size was determined in a preliminary 
experiment using mini-batches of 32, 64, and 128, with 64 resulting in the 
highest accuracy in the validation set. The relatively small batch sizes were 
considered, as they might lead to smoother minimizers and higher general
ization ability (Keskar et al. 2016). The number of time steps T was empirically 
specified to be 32 and V was set to be 21, resembling the available hand joints. 
Thirty-two consecutive frames, correspondingly 1.3 s in a 25 FPS video stream, 
were found to be sufficient for a human labeling expert to identify the correct 
motion. Increasing the number of frames increases the computational cost both 
during training and inferencing time and does not lead to higher accuracy.

The training was conducted using ADAM optimization with a starting 
learning rate of 1e-4 and a plateau learning rate scheduler set on the validation 
accuracy with a 0.5 reduction factor and 5 epochs patience. The learning rate 
and corresponding scheduler parameters were determined in a series of 
experiments using varying learning rates, ranging from 1e-3 to 1e-5, and 
reduction factors, ranging from 0.1 to 0.5.

The models were trained for a maximum of 30 epochs or until no further 
validation accuracy increase was measured. During the experiments, it was 
observed that after 30 epochs none of the models showed any substantial 
accuracy increase.

Ablation studies were performed using Sharpness-Aware Minimization 
(SAM) as a wrapper to the ADAM optimizer (Foret et al. 2020) for improving 
the models generalization ability. Considering the high class-imbalance, a class- 
weighted binary cross-entropy (BCE) loss function as well as focal loss (Lin 
et al. 2017) were applied. The weighted BCE loss function acts similarly to 
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oversampling underrepresented classes. Focal loss reduces the importance of 
easily classified and focuses on hardly classified examples which tackles the 
problem of over-confidence in unbalanced dataset. Collecting additional data to 
handle the class imbalance does not lead to the desired result as the class 
distribution is naturally determined for a manual assembly task.

Ablation Study

We examined the effectiveness of training optimization, the implementation 
of additional joints as well as joint and bone model ensembling. The experi
ments were conducted for the joint-stream adaptive graph convolutional net
work, which was trained and validated on the proposed MTM-1 dataset. For 
the ablation evaluation, the overall accuracy was used as a metric to achieve 
a general comparability between the experiments (see Table 4).

For the baseline model, no additional joints were added, and weighted BCE 
loss was used in the training process resulting in a mean accuracy of 78.01%.

The class imbalance was addressed by using focal loss as it focuses the 
training more on hard to classify examples. The proposed use of focal loss led 
to an accuracy improvement of 3.52% from the baseline.

Besides the already implemented dropout and batch normalization layers, 
we introduced Sharpness-Aware Minimization (SAM) to the ADAM optimi
zer, to further prevent overfitting. Wrapping ADAM with SAM gave an 
additional accuracy boost of 2.04% and stabilized the validation loss when 
training for many epochs.

The additional joints type 1 and 2 improved the model’s prediction cap
abilities by 0.92%, by enabling the model to encode more information on 
certain hand poses.

Through ensembling the separately trained joint-stream model and bone- 
stream model (2s-AGCN), the accuracy could be improved by another 1.29%, 
see Table 5. This leads to the conclusion that both streams learn individual 
representations each of which are meaningful for the motion prediction.

Table 4. Comparison of the validation accuracy when applying different 
training techniques and adding joints to the natural hand graph to the joint- 
stream-AGCN.

+ Joints 1 + Joints 2 SAM Loss Accuracy (%)

BCE 78.01
Focal 81.53

✓ Focal 83.57
✓ ✓ Focal 82.94

✓ ✓ Focal 83.47
✓ ✓ ✓ Focal 84.39

e2014191-1294 A. RIEDEL ET AL.



To give more insights about the individual class performance, the F1- 
score (harmonic mean of precision and recall) per class is calculated for the 
final 2s-AGCN in Table 6. The F1-Score is considered due to the high 
class-imbalance as it does not correspond to the underlying class distribu
tion, unlike accuracy.

The model predicts all classes at an accuracy of at least 82.75% except for 
the “Release” class, showing 23.44% accuracy. The high variance can be 
explained by the underrepresentation of the “Release” class in the training 
dataset with only 3.8% of the data showing the “Release” motion. Moreover, 
“Release” shows a high intra-class variability in terms of motion and 
duration and cannot even be observed by the human eye for certain 
assembly tasks.

The confusion matrix (Figure 5) shows that “Release” is mainly mistaken 
with “Position.” This is explained by the natural sequence of the manual 
assembly process where positioning an object is followed by a release opera
tion. Other mistaken predictions are also mainly neighbors in the motion 
sequence cycle (Figure 3).

Table 5. Accuracies and average F1-scores of the two stream 
methods and two-stream ensemble.

Method Accuracy (%) Ø F1-score (%)

Joint-Stream AGCN 84.39 76.82
Bone-Stream AGCN 81.43 74.83
2-s AGCN 85.68 78.21

Table 6. Class-wise F1-scores and unweighted F1-scoresof the 
final 2s-AGCN with all classes compared to the 2s-AGCN 
trained without the “Release” class. Bold values imply higher 
F1-score.

Class F1-score (%) F1-score w/o release (%)

Grasp 86.79 86.87
Move 86.07 85.39
Position 86.47 91.07
Reach 82.75 83.83
Release 23.44 -
Negative 98.96 99.00
Ø F1-score 78.21 89.23

Table 7. Comparison of LSTM, Spatio-Temporal-GCN 
and two-stream AGCN accuracy and average F1- 
score on the MTM-1 hand graph dataset.

Method Accuracy (%) Ø F1-score (%)

LSTM 70.75 64.32
ST-GCN 75.14 66.02
2s-AGCN 85.68 78.21
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For the real-world use of tracking assembly data on the shopfloor and 
verifying planned assembly tasks, the motion “Release” might not be 
crucial to identify correctly. In MTM-1 it is either measured with 
a fixed value for actively releasing an object (2 TMU = 0.072 s) or not 
even considered for passive releasing (0 TMU) (Bokranz and Landau 
2012). Thus, we trained additional models replacing “Release” with 
“Position,” showing superior classification results for most of the other 
classes, as shown in Table 6.

The lightweight architecture of the two-stage pipeline allows real-time 
inference on edge devices. The model combination of MediaPipe Hands and 
2s-AGCN shows a total of 3.6 M parameters and 30 ms inference time on the 
Nvidia Jetson Nano.

Visualization and Explainability

We can show that the learned adjacency matrix of the AGCN model’s last layer 
is more diverse than the original one and reflects intuitive assumptions about 
the importance of hand joints for gesture recognition. Across the networks 

Figure 5. Normalized confusion matrix of the final 2s-AGCN model.
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layer, the adjacency matrices show largely varying appearances, leading to the 
assumption that each layer evolves a specific graph structure according to its 
learned representations.

The analysis of the difference between the original and the learned adjacency 
matrix shows how connections between the first three fingers evolve, whereas 
other connections vanish (Figure 6). Thumb, index, and middle fingers are of 
special importance for recognizing positioning and grasping movements, which 
can explain the models' stronger focus on these connections. Also, the joints 
from almost every finger to the index finger (joints 6–8) strengthened, which 
emphasizes the natural importance of this finger for the considered motions.

Figure 6. Absolute difference between original hand joint adjacency matrix and learned adjacency 
matrix. The figure shows how connections between joints 5–13 (upper-left section) are strength
ened in the learning process. Connections between joints of the last two fingers (joints 13–20) are 
weakened (lower section) or unaffected (upper-right section).
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State-of-the-Art Comparison

For comparing different approaches on MTM-1 motion recognition from 
hand key points, the experiments were also performed using a simple LSTM 
model (Hochreiter and Schmidhuber 1997) and a non-adaptive ST-GCN 
(Yan, Xiong, and Lin 2018). The LSTM was defined by 120 hidden nodes on 
two layers, followed by fully connected output layer. The ST-GCN was imple
mented as provided by the PyTorch Geometric Temporal extension library 
(Rozemberczki et al. 2021) with 16 spatial channels and a fully connected 
output layer. All models were trained on the joint data.

The superiority of AGCN (85.68% accuracy) over LSTM (70.75% accuracy) 
and ST-GCN (75.14% accuracy) on the MTM-1 dataset can be clearly proven, 
underlining previous research results on other motion datasets such as NTU- 
RGB or Kinetics (Table 7).

Case Study

In a use-case study, we demonstrate how the proposed method can be used to 
generate MTM-1 analysis tables of manual assembly tasks during the manu
facturing process. For this purpose, we analyze the inference results of valida
tion video 1 of the MTM-1 dataset.

The achieved validation accuracy of the final model is sufficient to make 
useable predictions that generally follow the ground truth signal, shown in 
Figure 7. This diagram resembles the class-wise F1-Scores of the final model. 
Analyzing Figure 7 also reveals that the low F1-score of the “Release” class 
might be partially explainable by the wrong timing of the prediction, rather 
than by a missing prediction.

Figure 7. Prediction of the MTM-1 motions with our proposed method on validation video 1 of the 
MTM-1 dataset. The inferencing is generally accurate compared to the ground truth in terms of the 
predicted classes and motion duration. The key point extraction method fails to predict the hand 
coordinates, leading to a “Negative” prediction at 2.2 s. Also, the algorithm shows difficulties in 
predicting the “Release” class at 3.4 s or predicts the class too late (7.7 s).
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The inference results of validation video 1 can be directly used to create an 
MTM-1 analysis table (Table 8) for planning, verification, or monitoring the 
manual assembly task. The only post-processing method applied to the data 
was filtering out short-time predictions of the “Negative” class, to eliminate 
noisy inter-class transitions. Restrictions about the permissible order of the 
predictions might further improve the accuracy in the real-world use. For 
example, “Reach” cannot be followed by “Move” without a “Grasp” prediction 
in between.

Discussion

The system proposed in this work has been proven to meet the requirements 
for real-time MTM-1 motion prediction in an industrial manual assembly 
environment. As the results show, our two-stage approach of a key point 
extractor and a graph convolutional network is capable of this challenging 
task, using data from only one RGB camera. The issue of a naturally imbal
anced dataset and the demanding training process of the AGCN were over
come by using focal loss and regularization techniques. Also, we were able to 
briefly explain the models learned representations by visualizing the adaptive 
adjacency matrix.

The low workplace invasiveness and the high prediction quality differenti
ate the proposed method from other system in the literature that rely on 
physical sensors or inferior prediction models.

A real-world case study demonstrates that the graph convolutional net
works predictions can be used to generate MTM workplace analysis tables, 
including the motion duration for each assembly phase. This qualifies non- 
experts to identify assembly times for products and to validate existing MTM 
analyses on many workstations simultaneously.

Table 8. Algorithmic MTM-1 analysis of the assembly task 
shown in validation video 1, MTM-1 dataset.

No. Basic motion TMU Time in s

1 Reach 16.1 0.58
2 Grasp 27.7 0.997
3 Move 25.4 0.914
4 Position 35.8 1.289
5 Reach 16.2 0.583
6 Grasp 41.6 1.498
7 Move 31.2 1.123
8 Position 25.4 0.914
9 Release 1.2 0.043
10 Reach 15.0 0.54
11 Grasp 27.7 0.997
12 Move 17.3 0.623
13 Position 27.7 0.997
14 Release 5.8 0.209
Total 314.1 11.308
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For applying the approach in a wide range of real-world use cases, trained 
models can be fine-tuned to specific scenarios as the MTM-1 motions are pre- 
defined and universally used.

The difficulties in predicting the “Release” class can partly be overcome by 
additional training data. As this motion is not even observable by human experts 
in many assembly situations, “Release” might also be considered a fix prediction 
for a defined number of frames or simply not considered at all.

Since the proposed method relies on RGB video data, the operator’s hands 
must be fully visible at all times to make meaningful predictions. As this 
cannot be guaranteed for all manual assembly activities and workplaces, the 
scope of application is limited.

In future research, more real-world use cases and their benefits to compa
nies should be studied and discussed. These also include the evaluation of 
efficiency gains and cost reduction by using the proposed MTM-1 motion 
model in production. Neural network architectures that are able to predict 
more complex gestures derived from the MTM-1 basic motions should also be 
investigated, as they can provide additional useful insights. The additional 
MTM motions might include full-body motions like lifting and walking or eye 
movements. Body and head key point models are widely available and could be 
used analogously to the hand model.

To overcome the limits of visibility, multi-sensor data fusion combining 
RGB, electromyographic signals, and depth signals might be a promising 
research direction for gesture recognition in industrial environments.
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