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aDepartment of Electronics and Communication Engineering, Dr. Sivanthi Aditanar College of
Engineering, Tiruchendur, Tamilnadu, India; bDepartment of Information Technology, National
Engineering College, Kovilpatti, Tamilnadu, India

ABSTRACT
DAG scheduling is a process that plans and supervises the
execution of interdependent tasks on heterogeneous comput-
ing resources. Efficient task scheduling is one of the important
factors to improve the performance of heterogeneous comput-
ing systems. In this paper, an investigation on implementing
Variable Neighborhood Search (VNS) algorithm for scheduling
dependent jobs on heterogeneous computing and grid envir-
onments is carried out. Hybrid Two PHase VNS (HTPHVNS) DAG
scheduling algorithm has been proposed. The performance of
the VNS and HTPHVNS algorithm has been evaluated with
Genetic Algorithm and Heterogeneous Earliest Finish Time algo-
rithm. Simulation results show that VNS and HTPHVNS algorithm
generally perform better than other meta-heuristics methods.

Introduction

Grids enable the sharing, selection, and aggregation of a wide variety of
heterogeneous resources including supercomputers, storage systems, data
sources, and specialized devices that are geographically distributed and
owned by different organizations. The grid allows users to solve larger-scale
problems by pooling together resources that could not be coupled easily before
(Foster and Kesselman 2004; Freund and Siegel 1993).The efficiency of execut-
ing applications on grid and heterogeneous systems critically depends on the
methods used to schedule the tasks onto the processors. Scheduling in grid
systems is a challenging task, as it involves coordinating multiple computa-
tional sites for resource sharing and scheduling in an efficient manner. Given
an application modeled by the Directed Acyclic Graph (DAG), the scheduling
problem deals with mapping each task of the application onto the available
heterogeneous systems in order to minimize makespan (Chitra, Rajaram, and
Venkatesh 2011). DAG includes the characteristics of an application program

CONTACT S. Selvi mathini31@yahoo.co.in Department of Electronics and Communication Engineering,
Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, Tamilnadu 628215, India.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/UAAI.

APPLIED ARTIFICIAL INTELLIGENCE
2017, VOL. 31, NO. 2, 134–173
http://dx.doi.org/10.1080/08839514.2017.1300010

© 2017 Taylor & Francis

http://www.tandfonline.com/UAAI


such as the execution time of tasks, the data size to communicate between
tasks, and task dependencies.

Grid and heterogeneous computing systems are exclusively meant for
handling large volumes of computational loads such as data generated in
the high-energy nuclear physics experiments (Wong et al. 2003), bioinfor-
matics (Darling, Carey, and Feng 2003), and astronomical computations.
These applications demand new strategies for collecting, sharing, transfer-
ring, and analyzing the data (Viswanathan, Veeravalli, and Robertazzi 2007).
Also, those applications have long execution times, and hence they require
high-quality task schedules to minimize their run times. Additionally, the
static scheduling time of several scientific and engineering applications is
much lower than their run time on grid and heterogeneous systems. For
example, the execution times of more than 50% of the parallel applications
that were run on four real parallel computing systems are between tens and
thousands of minutes (Iosup et al. 2006), while the static scheduling times of
parallel applications with diverse characteristics, which were scheduled using
several static scheduling algorithms, are lower than 1 second (Topcuoglu,
Hariri, and Wu 2002). Also, the high throughput of grid and heterogeneous
computing systems depends on the efficiency of the scheduling algorithms,
which are developed for them (Mohammad and Kharma 2011). However, it
is easy to demonstrate that the best existing scheduling algorithms for grid
and heterogeneous computing systems generate suboptimal task schedules
(Mohammad and Kharma 2008; Sih and Lee 1993; Topcuoglu, Hariri, and
Wu 2002). This paves the path to contribute in these lines of research for the
development of better scheduling algorithms for the grid and heterogeneous
computing systems, able to deal with large-size real-world application sche-
duling problem instances by using innovative concepts.

The task scheduling problem has been solved several years ago and is
known to be NP-complete (Coffman 1976; El-Rewin and Lewis 1990; Garey
and Johnson 1979; Ilavarasan, Thambidurai, and Mahilmannan 2005; Kwok
and Ahmad 1996, 1999; Sih and Lee 1993; Topcuoglu, Hariri, and Wu 2002;
Ullman 1975). In general, task scheduling algorithm for heterogeneous sys-
tems is classified into two classes: static and dynamic (Hamidzadeh, Kit, and
Lija 2000; Kwok and Ahmad 1999; Zomaya, Ward, and Macey 1999). In
static scheduling algorithms, all information needed for scheduling such as
the structure of the parallel application, the execution times of individual
tasks, and the communication costs between tasks must be known in advance
(Mohammad and Kharma 2008, 2011). Static task scheduling takes place
during compile time before running the parallel application. In contrast,
scheduling decisions in dynamic scheduling algorithms are made at run
time. The objective of dynamic scheduling algorithms includes not only
creating high-quality task schedules, but also minimizing the run-time sche-
duling overheads (Bansal et al. 2003; Boyer and Gs 2005; Hamidzadeh, Kit,
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and Lija 2000; Ilavarasan, Thambidurai, and Mahilmannan 2005; Kim et al.
2005; Kwok and Ahmad 1999; Zomaya, Ward, and Macey 1999).

Static scheduler acts as the basic building block to develop a powerful dynamic
scheduler, able to solve more complex scheduling problems. Static scheduling has
its own areas of specific application, such as planning in distributed HC systems,
and also analyzing the resource utilization for a given hardware infrastructure
(Nesmachnow et al. 2012a). In this paper, static scheduling is addressed, as it
allows the use of sophisticated scheduling algorithms to create high-quality task
schedules without introducing run-time scheduling overheads. Because of its key
importance, task scheduling algorithm has been studied extensively, and a lot of
static scheduling algorithms have been proposed (Topcuoglu, Hariri, and Wu
2002).

This work presents a thorough experimental exploration of Variable
Neighborhood Search (VNS) algorithm, with problem specific neighborhood
structures to solve the

DAG task scheduling problem in order to reduce the makespan. VNS is a
simple and effective meta-heuristic method developed to efficiently deal with
the hard optimization problem. VNS is a framework for building heuristics,
based upon systematic changes of neighborhoods both in descent phase to find
a local minimum and in perturbation phase to emerge from the corresponding
valley. VNS demonstrated good performance on industrial applications such as
design of an offshore pipeline network (Brimberg et al. 2003) and the pooling
problem (Audet et al. 2004). It has also been applied to real-world optimization
problems, including optimization of a power plant cable layout (Costa,
Monclar, and Zrikem 2005), optical routing (Meric, Pesant, and Pierre 2004),
and online nodes allocation problem for Asynchronous Transfer Mode (ATM)
networks (Loudni, Boizumault, and David 2006). Applications of VNS are
diverse, which include the areas such as location problems, data mining, graph
problems, mixed integer problems, scheduling problems, vehicle routing pro-
blems, and problems in biosciences and chemistry too (Behnamian and
Zandieh 2013; Hansen, Mladenovi´C, and Moreno Pérez 2008).

Efficient numerical results are reported in the experimental analysis per-
formed on a large set of randomly generated graphs, and also the graphs
abstracted from three well-known real applications: Gaussian elimination,
Fast Fourier Transform (FFT), and molecular dynamics application.

The major contributions of this work are considered to be: First, applying
VNS algorithm to solve the DAG application problems of heterogeneous
environment. Second, the Problem Aware Local Search (PALS) algorithm
was embedded with Genetic Algorithm (GA) and VNS to explore the solu-
tion space. Third, development of Hybrid Two PHase VNS (HTPHVNS)
DAG scheduling algorithm to evolve good quality schedules. Fourth, simula-
tion experiments were conducted to verify the effectiveness and efficiency of
the proposed VNS algorithm and HTPHVNS algorithm. The comparative
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study shows that the proposed VNS is able to achieve better performance
than the leading heuristic scheduling algorithm and to find better solutions
faster than GA. The average percentage of improvement of VNS is found to
be 5.51 over GA and 9.87 over Heterogeneous Earliest Finish Time (HEFT)
algorithm. Compared with VNS, HTPHVNS algorithm achieves the make-
span reduction of 4.07% on average.

Related work

Heuristic algorithm, guided random search algorithm, and the hybrid of
previous two kinds of algorithms, namely hybrid scheduling algorithm
(Wang et al. 2012) are the three major classifications of static task scheduling
algorithms.

The former can be further classified into three groups: list scheduling
heuristics, clustering heuristics, and task duplication heuristics. A list sche-
duling heuristic assigns the tasks with resources by considering the priority of
the task (Kwok and Ahmad 1999). Fast Critical Path (Radulescu and Van
Gemund 1999), Modified Critical Path (Wu and Dajski 1990), Dynamic
Level Scheduling (Sih and Lee 1993), Mapping Heuristic (El-Rewini, Lewis,
and Ali 1994), Earliest Time First(Hwang et al. 1989), Dynamic Critical Path
(Kwok and Ahmad 1996), Heterogeneous Earliest Finish Time (Topcuoglu,
Hariri, and Wu 2002), Critical-Path-On-a-Processor (Topcuoglu, Hariri, and
Wu 2002), Longest Dynamic Critical Path (Mohammad and Kharma 2008),
Critical-Path-On-a-Cluster (Kim et al. 2005) are some examples of list
scheduling heuristics. List-based heuristic algorithm is a widely used heuristic
algorithm, which can generate high-quality task schedule in a short time, but
it will not perform well in all cases (He et al. 2006; Kwok and Ahmad 1999).

Clustering heuristics map the tasks in a given graph to an unlimited
number of clusters and refines the previous clustering by merging some
clusters. Some examples in this group are the dominant sequence clustering
(Yang and Gerasoulis 1994), linear clustering method (Kim and Browne
1988), mobility directed (Wu and Dajski 1990), and clustering and schedul-
ing system (Amini et al. 2011; Liou and Palis 1996).

Task duplication heuristic follows the principle to schedule a task graph by
mapping some of its task redundantly, which reduces the interprocess com-
munication overhead (Ahmad and Kwok 1994; Bajaj and Agrawal 2004;
Chung and Ranka 1992; Kruatachue and Lewis 1988; Park, Shirazi, and
Marquis 1997; Tsuchiya, Osada, and Kikuno 1997).

Guided random search techniques follow the principles of evolution and use
random choice to guide themselves through the problem space. These techni-
ques combine the knowledge gained from previous search results with some
randomizing features to generate new results. GAs are the most popular and
widely used method for the task scheduling problem (Chitra, Rajaram, and
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Venkatesh 2011; Correa, Ferreria, and Rebreyend 1996; He et al. 2006; Hou,
Ansari, and Ren 1994; Shroff et al. 1996; Singh and Youssef 1996; Song,
Hwang, and Kwok 2006; Topcuoglu, Hariri, and Wu 2002; Wang 1997;
Wang et al. 2012; Xu et al. 2013; Zomaya, Ward, and Macey 1999). It aims
to obtain near-optimal task schedules by imitating the process of biological
evolution. GA can usually get good scheduling results after sufficient number
of generations, but its time complexity is much higher than that of the
heuristic algorithm (Topcuoglu, Hariri, and Wu 2002; Xu et al. 2013). Well-
known examples of this category include Particle Swarm Optimization (Chen
et al. 2006; Liu, Wang, and Liu 2010), Ant Colony Optimization (Ferrandi
et al. 2010; Tumeo et al. 2008), Simulated Annealing (Kashani and Jahanshahi
2009), Tabu Search (Shanmugapriya, Padmavathi, and Shalinie 2009; Wong
et al. 2009), Double Molecular Structure–based Chemical Reaction
Optimization (DMSCRO) (Xu et al. 2013), Differential Evolution (Talukder
Khaled Ahsan, Kirley, and Buyya 2009), VNS(Lusa and Potts 2008;
Moghaddam, Khodadadi, and Entezari -Maleki 2012; Wen, Xu, and Yang
2011) and Local Search method (Kwok and Ahmad 1999; Wu and Dajski 1990).

A hybrid scheduling algorithm is the combination of both heuristic algo-
rithm and random search algorithm. The genetic list scheduling algorithm is
an example of this class of algorithms (Mohammad and Kharma 2011).

Problem definition

In static task scheduling of dependent tasks of grid and heterogeneous systems,
the application is represented by DAG. DAG is defined byG ¼ V;Eð Þ, where V
is a set of v tasks (n1, n2, n3,. . ., nv), and E is a set of e communication edges,
corresponding to the dependency among tasks. The computational grid and
heterogeneous system are represented by a set P of q computing nodes (p1, p2,
p3,. . ., pq) that have diverse capabilities. All nodes in the system are assumed to
be fully connected (Topcuoglu, Hariri, and Wu 2002). Each ni ϵ V represents a
task in the application, which in turn is a set of instructions that must be
executed sequentially in the same computing node without pre-emption. The
amount of communication data required to be transmitted from one task to
another is represented by a two-dimensional matrix, Data of size v� v.

Each edge i; jð Þ 2 E represents a precedence constrained, such that the
execution of the task nj cannot be started before the task ni finishes its
execution. If i; jð Þ 2 E, then ni is a parent of nj and nj is a child of ni. A
task with no parents is called an entry task, and a task with no children is
called exit task. Associated with each edge i; jð Þ, there is a value Ci,j defined by
Equation (1)(Topcuoglu, Hariri, and Wu 2002) that represents the estimated
intertask communication cost required to pass data from the parent task ni
(scheduled on pm) to the child task nj (scheduled on pn). The interprocessor
communications are assumed to perform without contention (Topcuoglu,
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Hariri, and Wu 2002). The communication bandwidths between heteroge-
neous computing nodes are stored in the matrix B of size q� q. The
communication start-up costs of the computing nodes are given in a
q-dimensional array L.

ci;j ¼ Lm þ
datai;j
Bm;n

(1)

where Lm is the communication start-up cost of computing node pm, datai;j is
the amount of communication data that are to be transmitted from task ni to
task nj, and Bm;n represents the communication bandwidth between the
heterogeneous computing nodes (pm and pn).

Because tasks might need data from their parent tasks, a task can start
execution on a computing node only when all data required from its
parents become available to that node. The speed of the inter-processor
communication network is assumed to be much lower than the speed of the
intra-processor bus. Therefore, when two tasks are scheduled on the same
computing node, the communication cost between these tasks can be
ignored. Before scheduling, edges are labeled with average communication
cost, which is defined by Equation (2)(Topcuoglu, Hariri, and Wu 2002).

ci;j ¼ �Lþ datai;j
�B

(2)

where �B is the average communication bandwidth and �L is the average
communication start-up cost of all computing nodes involved in the sche-
duling process.

W is the v � q computation cost matrix, which stores the execution cost of
tasks. Each element wi, j ϵ W represents the estimated execution time of task
ni on the node pj, which is unfeasible before running the application. But the
profiling information of task ni with node pj and the analyses of the past
observation of the running times of similar tasks on pj are the approaches for
the estimation of execution time of task ni on the computing node pj.

Before scheduling, the tasks are labeled with the average execution costs.
The average execution cost of a task ni is defined in Equation (3) (Topcuoglu,
Hariri, and Wu 2002).

wi ¼
Xq

j¼1
wi;j

q
(3)

where wi;j is the computation cost of the task ni on the computing node pj.
The task scheduling problem is the process of assigning a set of v tasks in a

DAG to a set of q computing nodes, which have diverse characteristics, without
violating the precedence constraints. Before scheduling, the priority of execution
of tasks is calculated based on the upward ranking methodology (Topcuoglu,
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Hariri, and Wu 2002). The upward rank of a task ni is denoted asranku nið Þ,
which is defined in Equation (4) (Topcuoglu, Hariri, and Wu 2002).

ranku nið Þ ¼ wi þ max
nj2succ nið Þðci;j þ ranku nj

� �Þ (4)

where succ nið Þ is the set of immediate successor of taskni. The upward rank is
computed recursively by traversing the task graph upward starting from the
exit task, whose rank is given in Equation (5) (Topcuoglu, Hariri, and Wu
2002).

ranku nexitð Þ ¼ wexit (5)

The tasks are sorted in the decreasing order of the upward rank value. The
highest priority task (with high rank value) has the highest scheduling
priority. If more than one task has equal upward rank value, the scheduling
priority of the task is decided randomly.

In this paper, the schedule length of the given DAG application, namely
makespan, is the largest finish time among all tasks, which is the actual finish
time of the exit task,nexit.The objective of the task scheduling problem is to
minimize the makespan (fitness), without violating the precedence con-
straints of the tasks. The objective function is defined in Equation (6)
(Topcuoglu, Hariri, and Wu 2002).

fitness ¼ Makespan ¼ f xð Þ ¼ EFT nexitð Þ; for singlenexit
maxfEFTðnexitÞg; for multiplenexit

�
(6)

where EFT is the Earliest Finish Time of the task ni on the computing node
pj, defined in Equation (7) (Topcuoglu, Hariri, and Wu 2002).

EFT ni; pj
� � ¼ wi;j þ EST ni; pj

� �
(7)

where EST ni; pj
� �

is the Earliest Start Time of the task ni on the computing
node pj, defined in Equation (8) (Topcuoglu, Hariri, and Wu 2002).

EST ni; pj
� � ¼ maxfavail timeðpjÞ; ready timeðniÞg; if ni�nentry

0; if ni ¼ nentry

�
(8)

where avail time pj
� �

is the earliest time at which the computing node pj is
ready for the task execution and ready time nið Þ is the time when all data
needed by ni have arrived at the computing nodepj, defined in Equation (9)
(Topcuoglu, Hariri, and Wu 2002).

ready time nið Þ ¼ max
nm2pred nið ÞðEFT nmð Þ þ cm;iÞ (9)

where pred nið Þ is the set of predecessor tasks of the task ni.
The scheduling algorithms experimented in this paper follow the inser-

tion-based principle, by ensuring the precedence constraints of the tasks,
which considers the possible insertion of a task in an earliest idle time slot
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between two already scheduled tasks on a computing node (Topcuoglu,
Hariri, and Wu 2002). The length of the idle time slot should be equal to
or greater than the computation cost of the task to be scheduled.

Implementation of VNS algorithm for scheduling tasks on
computational grid

The following subsections deal with the representation of solution, genera-
tion of initial solution, explanation of neighborhood structures, and the
proposed grid job scheduling algorithm.

Solution representation

The solution is represented as an array of length equal to the number of jobs.
The value corresponding to each position i in the array represent the node to
which task i was allocated. The representation of the solution for the problem
of scheduling 13 tasks to 3 computing nodes is illustrated in Figure 1. The
first element of the array denotes the first task (n1) in a batch, which is
allocated to the computing node 2; the second element of the array denotes
the second job (n2), which is assigned to the computing node 1, and so on.

Initial solution generation

Numerous methods have been proposed to generate the initial solution when
applying meta-heuristics to the scheduling problem in the heterogeneous
environment (Abraham, Liu, and Zhao 2008; Xhafa 2007; Xhafa and Duran
2008). The deterministic heuristic Min-Min algorithm has been used as a
method to generate the initial solution (Algorithm A.1). This algorithm leads
to more balanced schedules and generally finds smaller makespan values than
other heuristics, since more tasks are expected to be assigned to the nodes
that can complete them the earliest. As the Min-Min algorithm provides a
good starting solution to the DAG scheduling algorithm, the VNS algorithm
converges to a desired solution faster than when using the random initial
solution. As GA did not produce expected good results with the Min-Min
seed, GA has been experimented with random seed.

J1 J2 J3 J4 J5 … Ji … 
G2 G5 G9 G1 G7 … Gj … 

(a) 
2 1 2 3 1 2 3 1 2 3 2 1 1

(b)

Grid Node 1 J2 J5 J8 J12 J13 

Grid Node 2 J1 J3 J6 J9 J11

Grid Node 3 J4 J7 J10

(c)

Figure 1. (a) Solution representation. (b) Solution for the problem of 13 tasks and 3 computing
nodes. (c) Mapping of tasks with computing nodes for the solution given in (b).
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Neighborhood structures

The neighborhood structure defines the type of modifications a current
solution can undergo and thus, different neighborhoods offer different
ways to explore the solution space. In other words, definition of the proper
neighborhood structures leads to a better exploration and exploitation of the
solution space. Two attributes of the solutions are considered to define six
neighborhood structures so that a larger part of the solution space can be
searched and the chance of finding good solutions will be enhanced. The
attributes that can be altered from one solution to another are “Random
assignment of grid nodes to jobs,” and “Workload of computing nodes.” The
defined neighborhood structures and corresponding moves associated with
them are explained in detail below.

SwapMove
This neighborhood structure provides a set of neighbors for current solution x,
based on exchanging the nodes assigned for the randomly selected three tasks.

Makespan-InsertionMove
This neighborhood assigns the Light node to the randomly selected task in
the task list of Heavy node. Light and Heavy nodes are the nodes with
minimum and maximum local makespan, respectively, where the local make-
span of individual node gives the completion time of its latest task.
Maximum local makespan is the makespan of the solution.

Figure 2. An example DAG(Topcuoglu, Hariri, and Wu 2002).
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InsertionMove
Neighbors generated using this neighborhood structure can be constructed
using the assignment of random node p1 in P to the random task n1 in V.

Weightedmakespan—Insertionmove
Based on this neighborhood structure, solutions are generated by assigning
the random node Lr to the random task n1 selected from the task list of the
random node Hr. Lr and Hr are the nodes having local makespan value less
than or equal to 0.25 and greater than or equal to 0.75 of the makespan of
current solution, respectively.

BestInsertionMove
This neighborhood maps the longest task n1 in the task list of Heavy to the
node having minimum execution time for n1.

To illustrate, a small-scale DAG scheduling problem involving 3 nodes and 10
tasks is considered (Figure 2) with the computation cost matrix given in Table 1.
The upward rank and the order of the tasks for execution are given in Tables 2
and 3, respectively. Consider the initial solution with makespan 126, which is
represented in Figure 3(a). The Weightedmakespan—InsertionMove operator
assigns the task n7 from the task list of p3 (considered as Hr) to the node p2
(considered as Lr). This mapping changes the localmakespan of p2 as 77, and
maintains the makespan of the current solution as 126 [Figure 3(b)]. Then the
task n10 assigned for p3 (Heavy-with localmakespan 126) is mapped with the
node p2 (Light—with localmakespan 77), according to the Makespan-
InsertionMove neighborhood. Thus the fitness of the current solution becomes
117, which is illustrated in Figure 3(c). Then the BestInsertionMove neighbor-
hood selects the longest task n1 from p2 (considered as Heavy) and assigns with
p3 (High-speed node of n1). This neighborhood minimizes the fitness of current
solution as 101 [Figure 3(d)]. The SwapMove operator swaps the nodes assigned
for the randomly selected three jobs n7, n8, and n3 (already mapped with p2, p1,
and p1, respectively) and changes the fitness of the solution as 98 [Figure 3(e)].
Then InsertionMove neighborhood selects the node p3 andmaps with the task n9

Table 1. Computation cost matrix for random DAG.
Task id P1 P2 P3

1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20
10 21 7 16
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(already mapped with p1).Thus the makespan of the current solution becomes
97, which is illustrated in Figure 3(f). Again the InsertionMove neighborhood
operator changes the makespan of the current solution as 93 [Figure 3(g)], by
mapping the task n5 (already mapped with p1) with the node p2, and then as 92
[Figure 3(h)], by mapping the task n4 (already mapped with p3) with the node p2.
The final solution has the makespan 73, which is the result of the application of
the InsertionMove neighborhood. The task n9 from the node p3 is assigned to the
node p2, which is illustrated in Figure 3(i).

The HEFT algorithm produces the makespan of 80 (Figure 4), for exam-
ple, DAG shown in Figure 2, which is greater than the makespan produced
by the related work (equal to 73).

Proposed VNS grid job scheduling algorithm

VNS is a meta-heuristic that systematically exploits the idea of neighborhood
change, both in descent to local minima and in escape from the valleys which
contain them. The term VNS is referred to all local search-based approaches
that are centered on the principle of systematically exploring more than one
type of neighborhood structure during the search. VNS iterates over more than
one neighborhood structures until some stopping criterion is met. The basic
scheme of the VNS was proposed by Mladenovic´ and Hansen (1997). Its

Table 2. Upward rank of the tasks.
Task id Upward rank

1 108.00000
2 77.00000
3 80.00000
4 80.00000
5 69.00000
6 63.33333
7 42.66667
8 35.66667
9 44.33333
10 14.66667

Table 3. Execution order of tasks.
Order of task id

1
4
3
2
5
6
9
7
8
10
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advanced principles for solving combinatorial optimization problems and
applications were further introduced in (Hansen and Mladenovic´ 2003;
Mladenovic´ and Hansen 1999, 2001) and recently in (Hansen, Mladenovic,
and Urosevic 2006, 2010).

VNS uses a finite set of preselected neighborhood structures denoted
asNk k ¼ 1; . . . ; kmaxð Þ .Nk xð Þ denotes the set of solutions in the kth neighbor-
hood of solutionx.VNS employs a local search to obtain a solution x 2 X
called as a local minimum, such that there exists no solutionx0 2 Nk xð Þ � X

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

Figure 3. Explanation of different neighborhood structures: (a) Initial solution, (b) Weighted
makespan–InsertionMove, (c)Makespan-InsertionMove, (d) BestInsertionMove, (e) SwapMove, (f)
InsertionMove, (g) InsertionMove, (h) InsertionMove, and (i) InsertionMove.
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withf x0ð Þ<f xð Þ. The local search can be performed in different ways. The
generic way consists of choosing an initial solutionx, finding a direction of
descent from x within a neighborhoodN xð Þ, and moving to the minimum of
f xð Þ within N xð Þ in the same direction. If there is no direction of descent, the
heuristic stops; otherwise, it is iterated. After the local search, a change in the
neighborhood structure is performed. Function NeighborhoodChange com-
pares the value f x0ð Þ of a new solution x0 with the value f xð Þ of the incum-
bent solution x obtained in the neighborhoodk. If an improvement is
obtained, kis returned to its initial value and the incumbent solution is
updated with the new one. Otherwise, the next neighborhood is considered.

The proposed VNS DAG scheduling algorithm is summarized in
Algorithm 1. VNS uses two parameters:tmax, which is the maximum cpu
time allowed as the stopping condition, andkmax, which is the number of
neighborhood structures used. Step 4 of Algorithm 1, which is called shaking,
randomly chooses a solution x0from the kth neighborhood of the incumbent
solutionx. After improving this solution via the PALSheuristic local search
(Algorithm 4), a neighborhood change is employed. The fitness of the
solution is evaluated based on the procedure described in the Algorithm 2.

Algorithm 1. VNS DAG scheduling algorithm

Input: x; kmax; tmax; order½�;W½�½�;Data½�½�; PALS maxiter
Output: x

1 repeat
2 k 1
3 repeat
4 x0  shake x; kð Þ
5 x00  PALSHeuristic x0; order½�;W½�½�;Data½�½�;PALS maxiterð Þ /* Local

search*/
6 Neighborhoodchange x; x00; kð Þ
7 until k ¼ kmax

8 t  CputimeðÞ
9 until t > tmax

Figure 4. A schedule for the example DAG using the HEFT algorithm.
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Algorithm 2. f x; order½�;W½�½�;Data½�½�ð Þ /*fitness evaluation */

Input: x; order½�;W½�½�;Data½�½�
Output: localmakespan½�; fitnes

1. [v, q]← size(W [][])
2. localmakespan½�  0;
3. for i = 1 to v do
4. Calculate EFT order ið Þ; x order ið Þð Þð Þ using the insertion-based schedul-

ing policy
5. Update the localmakespan½�
6. endfor
7. Makespan maximumðlocalmakespan½�Þ
8. fitnes Makespan

Algorithm 3. NeighborhoodChange

Input: x,x0,k
Output: x,k

1 if f x0ð Þ < f xð Þ then
2 x x0

3 k 1
4 else
5 k kþ 1
6 endif

Algorithm 4. PALS Heuristic

Input: x, order½�;W½�½�;Data½�½�, PALS maxiter
Output: x

1 for i = 1 to PALS maxiter do
2 localmakespan½�; fitnes½ �  f x; order½�;W½�½�;Data½�½�ð Þ =* Algorithm 2 *=
3 Best  1
4 JJ½�  Task list of Heavy
5 Select a random node p1, where p1�Heavy
6 JJJ½�  Task list of p1
7 ln lengthðJJ½�Þ
8 lnr  lengthðJJJ½�Þ
9 startheavy randi 1; ln� 1ð Þ
10 endheavy randi startheavy; lnð Þ
11 startres randi 1; lnr � 1ð Þ
12 endres randi startres; lnrð Þ
13 for i = startheavy to endheavy do
14 for j = startres to endres
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15 x00  Swap the computing nodes assigned for JJ[i] and JJJ[j]
16 localmakespan½�; fitnes½ �  f x; order½�;W½�½�;Data½�½�ð Þ
17 if (temp < Best)
18 x0  x00

19 Best ← temp
20 endif
21 endfor
22 endfor
23 if (fitnes > Best) then
24 fitnes ← Best
25 x x0

26 break
27 endif
28 endfor

Problem aware local search (PALS)
Basic concept of this local search has been used in the literature for the DNA
fragment assembly problem (Alba and Luque 2007) and the heterogeneous
computing scheduling problem (Nesmachnow et al. 2012b).Working on a
given schedule x, this algorithm selects a node Heavy to perform the search.
The outer cycle iterates on “it” number of tasks (where it = endheavy—startheavy
+ 1) of the node Heavy, while the inner cycle iterates on “jt” number of tasks
(where jt = endres—startres + 1) of the randomly selected node p1, other than
Heavy. For each pair (i, j), the double cycle calculates the makespan variation
when swapping the nodes assigned for JJ[i] and JJJ[j], where JJ and JJJ denote the
task list of the nodes Heavy and p1, respectively. This neighborhood stores the
best improvement on the makespan value for the whole schedule found in the
evaluation process of it×jt. At the end of the double cycle, the best move found so
far is applied. In this algorithm, startheavy and endheavy, and startres and endres
are assigned with random values based on the length of array JJ and JJJ,
respectively (Refer line 4 and 6 of Algorithm 4).The randomness introduced in
the parameters endheavy and endres makes this local search to differ from the
concept existing in the literature. The details of the neighborhood structures are
given in Algorithms 5–9.

Algorithm 5. SwapMove

Input: x
Output: x0  

1. Choose three random tasks n1, n2, and n3 in V
2. x0  Swap the computing nodes assigned for n1, n2, and n3 of x
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Algorithm 6. Makespan-InsertionMove

Input: x, order½�;W½�½�;Data½�½�
Output: x0

1. Evaluate the fitness of x
2. Select two nodes Light and Heavy from P, where Light and Heavy are the
nodes with minimum and maximum localmakespan, respectively

3. Select a random task n1 from the task list assigned for Heavy
4. x0  Assign Light to n1

Algorithm 7. BestInsertionMove

Input: x, order½�;W½�½�;Data½�½�
Output: x0

1. Evaluate the fitness of x
2. Select a longest task from the job list assigned for Heavy
3. Select a node p1 in P, where p1 has minimum execution time for n1
4. x0  Assign p1 to n1

Algorithm 8. Weightedmakespan—InsertionMove

Input: x, order½�;W½�½�;Data½�½�
Output: x0

1 Evaluate the fitness of x
2 Select two random nodes Lr and Hr,

where Localmakespan Lrð Þ � 0:25� fitnes, and
Localmakespan Hrð Þ � 0:75� fitnes

3 Select a random task n1 from the task list assigned for Hr
4 x0  Assign Lr to n1

Algorithm 9. InsertionMove

Input: x
Output: x0

1 Select a random task n1 in V
2 Select a random resource p1 in P
3 x0  Assign p1 to n1

Computational experiments

The performance of VNS-based DAG scheduling algorithm is compared with
the best existing heuristic algorithm, HEFT (Topcuoglu, Hariri, and Wu 2002),
and also with the popular meta-heuristic algorithm, GA (Hou, Ansari, and Ren
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1994). Since HEFT algorithm outperforms the other well-known heuristic sche-
duling algorithms for heterogeneous distributed computing system, HEFT algo-
rithm has been considered for comparison. The HEFT, GA, and VNS algorithms
are developed and run on the same platform in order to make a fair comparison.
Two sets of graphs are used as the workload to test the performance of DAG
scheduling algorithms: the randomly generated application graphs and the real-
world application graphs, in which three numerical applications are considered.

The VNS-based DAG scheduling algorithm was developed using MATLAB
R2010a and run on an Intel(R) Core(TM) i5 2.67 GHz with 4 GB RAM. The
performance of the algorithms is evaluated based on the makespan value. For
each DAG application, VNS and GA algorithms were run for 50 times, and the
average of these 50 runs is reported. The evaluation of the fitness function
usually requires larger computing time than the application of neighborhood
operators. When the problem dimension grows, algorithm takes more time to
evaluate the fitness of the solution. Hence, the maximum running time of the
algorithm is not set to uniform value for all applications. The stopping condition
tmax is set to 0.5*v, where v is the number of tasks of the application DAG.

Examining the performance of the algorithm parameters

This section deals with the experimentation of VNS to make two algorithm-
specific decisions, namely the order of neighborhoods and the selection of neigh-
borhoods. For taking these decisions, the proposed algorithm was run for three
real-world problems, namely Gaussian Elimination algorithm with matrix size as
12, FFT algorithm with input data size of 16, and Molecular Dynamics code with
communication to computation cost ratio (CCR) value of 5. In this section, 2
numbers of computing nodes are considered for the experimentation of algo-
rithmswith the real-worldDAGapplications. After the extensive experimentation,
the combination of SwapMove, Makespan-InsertionMove, BestInsertionMove,
Weightedmakespan—InsertionMove, and InsertionMove was selected for the
proposed VNS. Both the parameters PALS_maxiter and kmax are set to 5.

GA gave better results for the examined DAG applications with parameters:
10 number of population, and crossover and mutation constant as 0.5. The
best solution found at the end of each generation of GA will be applied to the
PALS algorithm to generate better schedule. If any improvement is achieved,
then the new solution generated by the local search algorithm will replace the
already found best solution. Then the next generation will be processed.

Performance results on randomly generated application graphs

The random DAGs used in this section were generated by varying a set of
parameters. The random graph generator was implemented based on the
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concept coined by Topcuoglu, Hariri, and Wu (2002), which accepts the
following parameters.

1. Size of the DAG, v: Total number of tasks in the DAG.
2. Communication to computation cost ratio, CCR: It is the ratio of the

average communication cost to the average computation cost.
3. Shape of the DAG,α: The height and width of the DAG are randomly

chosen from a uniform distribution with the mean value of
p
vð Þ/α

andα� pvð Þ, respectively, and which are rounded up to the nearest
integer.

4. Computation cost heterogeneous factor β: The expected execution time
of the task on the processors of the system is varied by using different
values of β. The variation of execution time of task on the processor is
high and low for high and low value of β, respectively.

The computation time of ni on the computing node pj is denoted aswi;j,
which is randomly selected from

wi � 1� β

2

� �
� wi;j � wi � 1þ β

2

� �
(10)

where wi is the average computation cost of the task ni. wi is randomly
chosen from the range [1,100]

Random application DAGs are generated with the following features:
Number of computing nodes q: {2, 4, 8, 16},
Number of tasks v: {20, 40, 60, 80, 100},
Value of CCR: {0.1, 0.5, 1, 2, 5},
α:{0.5,1,2},
β:{0.25,0.5,0.75,1}.

Figure 5(a) shows the performance of scheduling algorithms for various
sizes of application DAGs with 2 computing nodes and CCR value of 5. VNS
DAG scheduling algorithm produces less average makespan when compared
with other algorithms. As the number of tasks increases, the average make-
span of the application DAG is also increasing.

The average makespan variation of scheduling algorithms for various CCR
values is shown in Figure 5(b). This experiment was conducted by consider-
ing 2 numbers of computing nodes and with 100 numbers of tasks.

Performance results on real-world applications

Three real-world applications namely Gaussian elimination (Mohammad and
Kharma 2011; Topcuoglu, Hariri, and Wu 2002; Wu and Dajski 1990; Xu
et al. 2013), fast Fourier transformation (Chung and Ranka 1992; Cormen,
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Leiserson, and Rivest 1990; Mohammad and Kharma 2011; Topcuoglu,
Hariri, and Wu 2002), and a molecular dynamics code (Kim and Browne
1988; Mohammad and Kharma 2011; Topcuoglu, Hariri, and Wu 2002; Xu
et al. 2013) were considered to study the performance of algorithms.

Gaussian elimination
Figure 6 shows the DAG for the Gaussian elimination algorithm for the
matrix size of 5. If N is the size of the matrix, the total number of tasks in a
Gaussian elimination graph is equal to ðN2 þ N � 2Þ=2. As the structure of
the Gaussian elimination DAG is known, only the parameters such as CCR
values and the total number of computing nodes available for scheduling
were varied to generate Gaussian elimination DAGs.

The size of the matrix was varied from 5 to 20, with the increment value of
1. 0.1, 0.5,1, 2, and 5 were the CCR values used for the experimentation. The
number of heterogeneous computing nodes used for the mapping of tasks
was varied from 2 to 16, incrementing as a power of 2.

Figure 7(a) shows the average makespan produced by the DAG scheduling
algorithm in relation to CCR. The number of processor and the size of the
matrix are set to 5 and 12, respectively.

As the high value application DAGs are considered to be communication
intensive, the average makespan increases with an increase in the values of
CCR. From Figure 8, it is observed that the performance of VNS and GA is
better when compared with HEFT. This experimentation shows that VNS is
able to generate better schedules for the communication intensive applications.

Figure 7(b) gives the average makespan values of the algorithms at various
number of computing nodes from 2 to 16, incrementing as a power of 2,
when the size of matrix is equal to 30 and 5 as the CCR value.

(a) (b) 

Figure 5. Performance results on random graphs. (a) Average Makespan with respect to DAG
size. (b) Average Makespan with respect to CCR.
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The VNS algorithm is able to produce better schedules when compared
with other two algorithms. As the number of computing nodes is increased
for the fixed matrix size, the average makespan is found to be decreased.

Figure 8 shows the performance of the algorithm with respect to the size of
the matrix, when the number of processors is equal to 5. The CCR value used
for this experimentation is set to 0.5. The average makespan is found to be
increased as the size of the matrix increases. This experiment was conducted
with the application DAGs of various tasks ranging from 14 to 209. The
performance of VNS is found to be the best of all.

Based on three kinds of experimentation, it is found that the meta-
heuristic dominates the considered heuristic algorithm. Usually the meta-
heuristics explore wide area of solution space to find the better mapping of
tasks with computing nodes, when compared with the heuristic algorithm.

Figure 6. Gaussian Elimination DAG with size 5.
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Fast Fourier transform
Figure 9 shows the DAG of FFT with four input data points. The radix 2 FFT
algorithm is considered for the experimentation. Hence, if M denotes the
number of input data points, then M = 2k, where k takes integer values. Each
path from the start task to any of the exit task in the FFT DAG consists of
equal number of tasks. Also, in FFT DAG, the computation cost of tasks in
any level is equal and the communication with all of edges between two
consecutive levels is equal (Topcuoglu, Hariri, and Wu 2002).

(a) (b) 

Figure 7. Performance results on Gaussian elimination DAG. (a) Average Makespan with respect
to CCR. (b) Average Makespan with respect to number of computing nodes.

Figure 8. Average Makespan with respect to the matrix size of Gaussian elimination DAG.
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For M number of input data points of FFT DAG, total number of tasks is
equal to 2�M � 1 Recursive call tasksð Þ þM � log2M Butterfly operationð
tasksÞ. The input data points of FFT were varied from 2 to 64, incrementing
as a power of 2. Hence, the total number of tasks ranges from 5 to 511. CCR
values that were used in the experimentation are 0.1, 0.5,1, 2, and 5.

Figure 10(a) and (b) shows the average makespan of different algorithms
under different number of input data points of FFT. This experimentation
was conducted with the CCR value of 5 and with the total number of
computing nodes of 6.

As the number of input data points increases, the average makespan is also
found to be increased. The VNS DAG scheduling algorithm produces the
better schedules in most of the cases.

Figure 11(a) shows the performance of algorithms for 64 input FFT DAG
with respect to five different CCR values, when the number of computing
node is set to be 6. VNS DAG scheduling algorithm produces better results
consistently over other algorithms even for the high communication cost of
DAG applications.

Figure 11(b) presents the average makespan values obtained by the three
scheduling algorithms for 64 point FFT DAG, with respect to the various
number of computing nodes, by setting the CCR value as 5.

The VNS DAG scheduling algorithm gives better schedules when com-
pared with other scheduling algorithms. Figure 11(b) shows the decrease of
makespan with the increasing number of heterogeneous computing nodes.

Figure 9. Four input data point FFT DAG.
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The performance of VNS DAG scheduling algorithm is found to be good for
the FFT application DAGs.

Molecular dynamics code
The performance of the scheduling algorithms was studied for the mole-
cular dynamics code described in the reference (Kim and Browne 1988).
As the structure of the considered application DAG and its number of
tasks are known, the experimentation of scheduling algorithms was
carried out by varying the CCR values and the number of computing
nodes.

Figure 12 shows the DAG for the molecular dynamics code. Figure 13(a)
shows the variation of average makespan of scheduling algorithms for the
variation of CCR, by considering 6 number of computing nodes. It is

(a) (b) 

Figure 10. (a) and (b) Average Makespan with respect to the Input data points of FFT DAG.

(a) (b) 

Figure 11. Performance results on FFT DAG. (a) Average Makespan with respect to CCR. (b)
Average Makespan with respect to number of computing nodes.
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obtained from the Figure 13(a) that the average makespan yielded by the
VNS DAG algorithm is better, when compared with other scheduling algo-
rithms. Also the average makespan is found to be increased, when the CCR
value is increased.

Figure 13(b) shows the decrease in average makespan value with the
increasing number of heterogeneous computing nodes. This experimentation
was conducted with the CCR value of 1. The VNS algorithm gives the better
mapping of tasks with the computing nodes almost in all cases.

Convergence trace of scheduling algorithm

In this section, experiments were conducted to show the change of makespan
as VNS and GA progress during the search. The convergence trace of these
algorithms was then compared. Figures 14–16 show the convergence traces

Figure 12. Molecular Dynamics DAG (Topcuoglu, Hariri, and Wu 2002).
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for executing Gaussian elimination, FFT, and the molecular dynamics code,
respectively.

In these experiments, the stopping criteria (tmax) had been set to 0.5* v.
But while considering the real-time resource management system, the stop-
ping criteria could be set to 1 minute. It is revealed that the value of
makespan decreases gradually, as both VNS and GA progress. The

(a) (b) 

Figure 13. Performance results on Molecular Dynamics DAG. (a) Average Makespan with respect
to CCR. (b) Average Makespan with respect to number of computing nodes.

Figure 14. The convergence trace for the Gaussian elimination DAG.
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performance of VNS is better than the performance of GA.VNS converges
faster than GA with the exploration of shorter schedule than GA. Also, GA
performance was very closer to the performance of HEFT in most of the

Figure 15. The convergence trace for the fast Fourier transform DAG.

Figure 16. The convergence trace for the molecular dynamics application DAG.
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cases and did not able to compete for few DAG applications. Both VNS and
GA exploit the PALS algorithm in order to escape from local minima and for
the quick convergence.

Comparison with DMSCRO algorithm

Xu et al. (2013) devised and tested the DMSCRO DAG scheduling algorithm
in heterogeneous computing systems. The random-generated application
graphs and real-world application graphs, such as Gaussian elimination
and molecular dynamics code were used to evaluate the performance of
DMSCRO. The experimentation of DMSCRO reveals that DMSCRO is able
to achieve the similar makespan as GA (Xu et al. 2013). The average
percentage of improvement of VNS is found to be 5.51 over GA. Hence, it
may be considered that the proposed VNS is able to achieve better short
schedules when compared with the DMSCRO DAG scheduling algorithm.

Hybrid two-phase VNS DAG scheduling algorithm

The running time of meta-heuristic algorithms is much higher than the
heuristic algorithm. Hence, the concept of hybridization of meta-heuristic
with heuristic algorithm was coined by considering the scheduling time
constraints imposed by the scheduler. From the previous section, it has
been observed that the VNS DAG scheduling algorithm produces schedules
for a variety of application DAGs, in which the initial solution was generated
using Min-Min algorithm. In this section, the performance of VNS DAG
scheduling algorithm was studied by considering the solution generated by
the HEFT algorithm as the initial solution. Based on this concept, the
HTPHVNS algorithm has been emerged. This part of the experimentation
was carried out with the value of tmax considered in the previous section.

The whole part of the experimentation is repeated for all the application
DAGs considered in the previous section. The percentage improvements of
HTPHVNS algorithm over VNS algorithm is reported in Tables 4–13.

From the tables, it is observed that the performance of HTPHVNS algo-
rithm is better when compared with basic VNS algorithm.

The first phase of the HTPHVNS algorithm, HEFT generates a good
quality schedule. The schedule solution generated by the HEFT algorithm
is considered as the initial solution for the VNS DAG scheduling algorithm
in the second phase. The VNS DAG scheduling algorithm explores into a
wide area of solution phase, which in turn generates shorter schedules.

By extracting the features of HEFT algorithm, HTPHVNS algorithm is
able to meet the requirement of scheduler with both strict execution time
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requirements and loose execution time requirements. HTPHVNS algorithm
meets the requirement of strict execution time scheduler by means of allow-
ing the second phase of algorithm to run for the time that is permitted by the
scheduler in order to improve the quality of schedule generated by the first
phase .On the other hand, if there is no execution time constraints imposed
by the scheduler, the second phase of HTPHVNS works for the maximum
allowable running time of HTPHVNS algorithm. So HTPHVNS algorithm
will generate high-quality schedule. Hence, HTPHVNS DAG scheduling
algorithm is flexible to the user by allowing the termination of algorithm
while executing the second phase at any time of requirement.

Conclusion

Grid computing has emerged as one of the hot research areas in the field of
computer networking. Scheduling, which decides how to distribute tasks to
resources, is one of the most important issues. This paper deals with the
meta-heuristic and heuristic-based DAG scheduling algorithms in order to
minimize makespan. The performance of considered algorithms was studied
for 15,000 DAGs including random DAGs and real-world application DAGs.
The average percentage of improvement of VNS is found to be 5.51 over GA
and 9.87 over HEFT algorithm. By considering the execution time require-
ments of the scheduler, HTPHVNS DAG scheduling algorithm had been
proposed. Compared with VNS, HTPHVNS algorithm achieves the make-
span reduction of 4.07% on average.

Table 7. Percentage improvement for various matrix sizes of Gaussian
elimination DAG.

CCR = 0.5 and q = 5

VNS HTPHVNS

Matrix size Over HEFT Over GA Over VNS

5 10.18 2.02 4.30
6 10.45 2.27 4.07
7 10.39 6.17 4.12
8 10.16 4.94 3.90
9 9.99 7.11 4.32
10 9.49 6.61 4.15
11 10.12 8.70 4.07
12 10.53 7.17 3.49
13 10.66 8.57 3.72
14 10.79 7.72 4.13
15 10.99 6.66 4.01
16 9.63 7.68 3.97
17 9.33 6.88 3.89
18 9.33 7.21 4.92
19 11.13 9.89 4.01
20 11.81 9.68 4.67
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