

International Journal of Plant & Soil Science

Volume 36, Issue 8, Page 728-733, 2024; Article no.IJPSS.119873 ISSN: 2320-7035

Effect of INM on Growth Parameters of Rice Grown on Alluvial Calcareous Soil

A Raj Kumar a and Anil Kumar b*

^a Department of Soil Science and Agricultural Chemistry, Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad, Uttar Pradesh-224229, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ijpss/2024/v36i84902

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/119873

Original Research Article

Received: 29/05/2024 Accepted: 01/08/2024 Published: 09/08/2024

ABSTRACT

The field experiment was conducted at Main Experimental Station of Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad (U.P.) during the *Kharif*, 2014 to study theeffect of integrated nutrient management on soil properties, growth Characteristics of rice (*Oryza sativa*). The experiment comprised of ten treatments *viz.* T_1 (control), T_2 (100% RDF) T_3 (125% RDF), T_4 (100% RDF + FYM @ 5 t ha⁻¹), T_5 (100% RDF + Brown manuring), T_6 (100% RDF + BGA@ 10 kg ha⁻¹), T_7 (100% RDF + PSB), T_8 (Farmers practice (N_{100} : P_{40} : K_0), T_9 (100% RDF + FYM @ 5 t ha⁻¹ + PSB + *Azatobacter* + Brown manuring) in Randomized Block Design with three replications with rice variety NDR-97 was taken. The experimental soil was silty loam in texture having the maximum values of pH (7.88), EC (0.32 dSm⁻¹), organic carbon (0.34 %).

*Corresponding author: E-mail: akgoyal091@gmail.com;

Cite as: Kumar, A Raj, and Anil Kumar. 2024. "Effect of INM on Growth Parameters of Rice Grown on Alluvial Calcareous Soil". International Journal of Plant & Soil Science 36 (8):728-33. https://doi.org/10.9734/ijpss/2024/v36i84902.

^b Department of Agronomy, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh-208002, India.

Keywords: RDF; FYM; PSB; azotobacter; BGA.

1. INTRODUCTION

"Rice (Oryza sativa L.) is the most important staple food crop in the world. It is a rich source of energy and contains a reasonable amount of (6-10%). carbohydrate protein (70-80%).minerals (1.2-2.0%), and vitamins such as riboflavin, thiamine, niacin, and vitamin E. Over 90% of the world's rice is grown and consumed in Asia, often referred to as the rice bowl of the world, where 16% of the earth's population and two-thirds of the world's poor reside [1]. The global requirement for rice is projected to be about 880 million tonnes by 2050. According to the FAO [2] "worldwide production of rice was 719.74 million metric tonnes with an acreage of 160.6 million hectares. In India, rice is cultivated over approximately 43.9 million hectares, with an annual production of about 88.02 million tonnes". "India contributes around 21% of global rice production from its 28% share of the world's rice area. Rice is a vital food for the majority of the world's population. In Uttar Pradesh, the area under rice cultivation is about 5.86 million hectares, with a production of 12.50 million tonnes and a productivity of 2458 kg per hectare" (USDA 2023-24). "The decline or stagnation in rice yield has been attributed to nutrient depletion and reduced use of organic matter [3]. In the current scenario, where food and nutritional security are under threat, it is imperative to enhance the soil-plant-atmosphere system as a whole rather than focusing solely on crop nutrition. The combined use of organic and inorganic nutrient sources. along with biofertilizers, has proven to be more effective than using each component separately" [4]. "India's population is expected to reach 1.4 billion by the year 2025, further emphasizing the need for sustainable agricultural practices" [5].

2. MATERIALS AND METHODS

2.1 Geographical Situation of Experimental Site

The experiment was conducted at the Main Experimental Station of Narendra Nagar (Kumarganj), Faizabad (U.P.) during the *Kharif* season of 2014.

The main experimental station was located in Narendra Nagar (Kumarganj), Faizabad (U.P.), is situated on the Faizabad-Raibarely road, approximately 42 km from Faizabad. The

experimental site falls under the subtropical zone of the Indo-Gangetic plains, characterized by alluvial calcareous soil. It is located between 24.440-26.560 degrees North latitude and 82.120-83.980 degrees East longitude, with an elevation of about 113 meters above mean sea level. The experimental field was well-leveled and had good irrigation and drainage facilities. The mean annual rainfall in this region is 1021.8 mm, with about 90% of it occurring during the monsoon season. The soil of the experimental site is part of the Indo-Gangetic plain, classified as the Eastern Plain Zone (EPZ) in the alluvial tract of Uttar Pradesh. The properties of the soil are detailed in Table 1. Soil analysis data indicate that the soil is low in available nitrogen, medium levels of phosphorus and potassium.

3. RESULTS AND DISCUSSION

The data on plant height as influenced by integrated nutrient management are presented in Table 2. Significant difference in plant height was observed due to the application of various organic, inorganic, and biofertilizer treatments. Treatments included different levels of RDF: 100% RDF alone, 125% RDF alone, 100% RDF combined with FYM @ 5 t ha-1, Brown manuring, BGA @ 10 kg ha-1, PSB, and combinations of 100% RDF with FYM @ 5 t ha-1 + PSB + Azotobacter + Brown manuring or BGA @ 10 kg ha-1. The highest plant height was recorded in the treatment with 100% RDF + FYM @ 5 t ha-1 + PSB + Azotobacter + Brown manuring. The increase in plant height can be attributed to better nourishment, which enhances beneficial effects such as an accelerated photosynthesis, assimilation, cell division, and vegetative growth. These results align with the findings of Lin and Lin [12], Priyanka et al. [13] and Sujatha et al. [14].

3.1 Number of Tillers m⁻²

The number of tillers per square meter is a crucial growth attribute influenced by organic, inorganic, and biofertilizers. The maximum number of tillers was recorded with treatment T_{10} , which included 100% RDF + FYM @ 5 t ha⁻¹ + PSB + Azotobacter + Brown manuring. The Treatment T_9 , which included 100% RDF + FYM at 5 t ha⁻¹ + PSB + Azotobacter + BGA (Blue-Green Algae), also showed high tiller numbers. Conversely, the lowest number of tillers was

recorded in the T₁ (Control) group. The increased number of tillers per square meter can be due to the balanced nutrient supply that encouraged vegetative growth through the combined use of inorganic, organic, and biofertilizer sources. Organic manures and biofertilizers improved soil fertility, enhancing nutrient availability and, consequently, number of tillers per square meter. This improved nutrient availability ultimately leads to higher crop yields. These results are consistent with the findings of Azad and Lehria [15], Satsangi et al. [16] Jagdish and Yadav [17], Lin and Lin [12], and Dutt and Chauhan [18].

3.2 Dry Matter Production

The increase in dry matter production was observed at different growth stages due to the application of organic, inorganic, and biofertilizer treatments. Various levels of RDF were applied: either 100% RDF alone, 125% RDF alone, or 100% RDF in combination with FYM @ 5 t ha⁻¹,

Brown manuring, BGA @ 10 kg ha⁻¹, PSB, or combinations of 100% RDF with FYM @ 5 t ha⁻¹ + PSB + Azotobacter + Brown manuring or BGA @ 10 kg ha⁻¹. The maximum dry matter production was recorded in the treatment T₁₀ with 100% RDF + FYM @ 5 t ha⁻¹ + PSB + Azotobacter + Brown manuring, followed by the treatment T₉ with 100% RDF + FYM @ 5 t ha⁻¹ + PSB + Azotobacter + BGA.

The balanced nutrient supply with these treatments promotes greater photosynthate transfer from source to sink, which explains the rise in dry matter production. The different RDF levels and their combined application are responsible for the notable improvement in dry matter production. Treatments with Brown manuring showed relatively higher dry matter production compared to those with BGA. While the use of inorganic fertilizers alone also contributed to dry matter production, the extent was not as significant as when combined with organic and biofertilizers.

Table 1. Initial analysis of experimental soil

S. No.	Properties	Values	Method Employed
A. Physical properties			
1.	Bulk density	1.36	Core method (undisturbed sample) Black, 1965
2.	Texture		
i)	Sand (%)	24.15	Hydrometer method (Bouyoucos, 1936)
_ ii)	Silt (%)	56.68	
iii)	Clay (%)	19.17	
iv)	Textural class	Silt loam	Triangular method
B. Chemical properties			
1.	pH (1:2.5)	7.90	Glass electrode pH meter Jackson, [6]
2. 3.	EC (dSm-1 at 25°C)	0.38	Conductivity meter Jackson, [7]
3.	Organic carbon (%)	0.30	Walkley & Black's rapid titration method [8]
4.	Available N (kg ha ⁻¹)	130.96	Alkaline permanganate method Subbiah and Asija, [9]
5.	Available P (kg ha ⁻¹)	16.90	Olsen's method Olsen et al., [10]
6.	Available K (kg ha ⁻¹)	220.75	Flame photometer Jackson, [7]
7.	Available Zn (ppm)	0.49	Extraction with DTPA solution Lindsay & Norvell, [11]

The experiment was designed in Randomized Block Design (RBD), with ten treatments (i.e., , T1: Control, T2: 100% RDF, T3: 125% RDF, T4: 100% RDF + FYM @5 t ha⁻¹, T5: 100% RDF + Brown manuring, T6: 100% RDF + BGA @10 kg ha⁻¹, T7: 100% RDF + PSB, T8: Farmers practice (N100:P40), T9: 100% RDF + FYM @5 t ha⁻¹ + PSB + Azotobacter + BGA, T10: 100% RDF + FYM @5 t ha⁻¹ + PSB + Azotobacter + Brown manuring. and three replications. Each plot has a net plot size of 3.2 × 4 = 12.8 m² and a gross plot size of 4 × 5 = 20 m². The spacing is 20 cm × 10 cm. The variety used is NDR-97.

Table 2. Effect of integrated nutrient management on plant height (cm) and Number of tillers (m⁻²) at various growth stages of rice crop

Treatments	Plant height (cm)			Number of tillers m ⁻²				
	30 DAT	60 DAT	90 DAT	At harvest	30 DAT	60 DAT	90 DAT	At harvest
T ₁ - Control	30.21	55.07	68.96	70.85	128.44	290.22	299.48	298.48
T ₂ - 100% RDF	33.52	68.97	79.74	81.28	136.39	338.01	345.68	346.12
T ₃ - 125% RDF	33.96	70.35	83.02	82.72	140.88	349.13	359.78	360.60
T ₄ - 100% RDF + FYM @5 t ha ⁻¹	33.74	69.57	82.98	84.10	139.20	344.94	362.78	360.00
T ₅ - 100% RDF+ Brown manuring	33.50	69.12	82.22	83.52	138.78	343.90	356.56	357.12
T ₆ - 100% RDF + BGA@10 kg ha ⁻¹	33.57	68.25	81.10	82.65	138.10	342.21	358.78	359.90
T ₇ - 100% RDF +PSB	33.46	67.92	80.02	81.99	136.69	338.68	346.01	345.68
T ₈ - Farmers practice(N ₁₀₀ :P ₄₀ :K ₀)	32.06	62.10	77.20	79.00	132.55	329.11	333.17	333.17
T ₉ - 100% RDF + FYM @5 t ha ⁻	35.16	73.20	84.98	85.11	153.00	366.11	375.78	376.12
1+PSB+ <i>Azotobacter</i> +BGA								
T ₁₀ - 100%RDF+FYM @5 t ha ⁻	35.68	74.65	85.08	86.95	154.70	368.06	376.12	376.28
1+PSB+ <i>Azotobacter</i> +Brown manuring								
SEm+	2.06	2.25	2.56	2.96	1.64	3.29	3.96	4.51
CD (P= 0.05)	NS	6.66	7.76	8.08	4.90	9.86	12.10	13.76

Table 3. Effect of integrated nutrient management on dry matter production (g m⁻²) at various growth stages of rice crop

Tractments	Dry matter production (g m ⁻²)						
Treatments	30 DAT	60 DAT	90 DAT	At harvest			
T ₁ - Control	48.97	77.53	119.78	135.84			
T ₂ - 100% RDF	68.69	114.29	238.70	270.71			
T ₃ - 125% RDF	74.94	129.70	260.44	295.37			
T ₄ - 100% RDF + FYM @5 t ha ⁻¹	73.05	124.16	258.56	294.09			
T ₅ - 100% RDF+ Brown manuring	70.62	122.52	256.49	292.90			
T ₆ - 100% RDF + BGA@10 kg ha ⁻¹	72.96	123.42	257.20	292.78			
T ₇ - 100% RDF +PSB	69.56	115.76	242.35	272.77			
T ₈ - Farmers practice(N ₁₀₀ :P ₄₀ :K ₀)	58.12	93.78	141.19	196.98			
T ₉ - 100% RDF + FYM @5 t ha ⁻							
1+PSB+ <i>Azotobacter</i> +BGA	86.52	138.96	274.66	314.76			
T ₁₀ - 100%RDF+FYM @5 t ha ⁻							
1+PSB+ <i>Azotobacter</i> +Brown manuring	89.00	140.17	275.12	316.05			
SEm <u>+</u>	2.10	3.04	4.17	5.89			
CD (P= 0.05)	3.60	9.12	12.17	17.64			

The increased dry matter production at different stages under various treatments was due to the increased availability of nutrients in adequate amounts during different growth stages of rice. These results are corroborated by the findings of Begum et al. [19] Hasan, [20] Priyanka et al. [13], and Mhalevilie et al. [21] who also reported significant increases in dry matter production of rice with RDF and its combination with BGA, PSB, or Brown manuring. The variation in dry matter production among different treatments was due to differences in nutrient availability in the soil at respective growth stages [22].

4. CONCLUSION

The results obtained in this experiment, it can be conclusively stated that the application of T₁₀, which consisted of 100% RDF (Recommended Dose of Fertilizer) + FYM (Farm Yard Manure) at 5 t ha⁻¹ + PSB (Phosphate Solubilizing Bacteria) + Azotobacter + Brown manuring through organic application at par with Treatment T₉, which included 100% RDF + FYM at 5 t ha-1 + PSB + Azotobacter + BGA (Blue-Green Algae), also showed high Growth character. FYM at 5 t/ha, along with PSB, Azotobacter, and brown manuring, proved to be the most effective approach for enhancing growth characteristics. combination significantly Additionally, this contributed to maintaining soil health, thereby promoting sustainable rice production.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that generative Al technologies such as Large Language Models, etc have been used during writing or editing of

manuscripts. This explanation will include the name, version, model, and source of the generative AI technology and as well as all input prompts provided to the generative AI technology.

Details of the Al usage are given below:

1. Chat GPT

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Kumar N, Ahamad A, Rajkumar A. Effect of integrated nutrient management on yield and soil properties of rice (Oryza sativa). Journal of Pharmacognosy and Phytochemistry. 2018;7(1S):2283-6.
- 2. FAO; 2014. Available:http://www.fao.org/worldfoodsituation/csdb/en/
- 3. Yadav S, Lal M, Naresh RK, Yadav RB, Yadav AK, Yadav KG, Rajput P. Effect of organic and inorganic nutrient sources on productivity, grain quality of rice and soil health in north-west IGP: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019;8(12):2488-2514.
- 4. Palaniappan SP, Annadurai K. Organic farming: theory and practices; 2007.
- 5. Wani SP. New paradigm for transforming Indian agriculture to climate-resilient and

- sustainable agriculture is a must. Journal of Agrometeorology, 2023;25(1):79-91.
- Jackson ML. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi: 1973.
- 7. Jackson ML. Soil Chemical Analysis. Prentice Hall (India) Pvt. Ltd.New Delhi; 1973.
- 8. Walkley A, Black IA. Soil Science. Society. America. 1934;37:29.
- Subbaiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soil Current Science. 1956;25:258-260.
- Olsen SR.in organic phosphorous in alkaline and calcareous soil, American society of agronomy journal Monog. 1953;4:89-122.
- 11. Lindsay WL, Norvell W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal. 1978;42(3):421-428.
- Lin JL, Lin TL. Tiller number and leaf area index rice community as influenced by planting density and nitrogen fertilizer. J. Agril. Assoc. of China. 1985;12(9):14-34.
- 13. Priyanka G, Sharma GD, Rana R, Lal B. Effect of integrated nutrient management and spacing on growth parameters, nutrient content and productivity of rice under system of rice intensification. International journal of research in bio sciences. 2013;2(3):53-59.
- Sujatha K, Mosha G, Subbaiah P, PrasunaP.Residual soil fertility and productivity of rice (*Oryza sativa* L.) as influenced by different organic sources of nitrogen. International journal of plant, animal and environmental sciences. 2014;5(2):266-289.

- Azad BS, Lehria SK. Yield maximization of rice through integrated nutrient management under irrigated conditions. Annals of Agriculture research.2001;22(4):471-475.
- Satsangi GP, Bhavnagar VP, Srivastava JN. Effect of BGA/Urea as nitrogen application on growth. Journal of Living World. 2002;9(1):5-13.
- Jagdish K, Yadav MP. Effect of conjunctive use of organic inorganic and bio-fertilizer on growth and yield attributes, yield and nutrient uptake in hybrid rice (*Oryza sativa* L.). Research on crop.2008;9(3):511-113.
- 18. Dutta M, Chauhan BS. Effect of nutrient management practice on the performance of upland rice in a newly developed terraced land. Indian Agriculture. 2010;54(2):13-21.
- Begum ZNT, Mandal R, Islam MS. Effect of blue-green algae and Urea-N on growth and yield performance of traditional variety of rice. Journal of Phytological Research. 2009;22(2):211-214.
- 20. Hasan MA. Investigation on the Nitrogen fixing cyanobacteria (BGA) in rice fields of North-West region of Bangladesh. Journal of Environmental Science and Natural Resources. 2012;5(2):185-192.
- 21. Mhalevilie T, Sarkar NC, Atou K. Effect of biofertilizer on the productivity of terraced upland rice (*Oryza sativa* L.) International journal of bio-resource and stress management. 2013;4(3):400-403.
- 22. John PS, George M, Jacob R, Zool. Nutrient mining in agro climatic zones of Kerala, Fertilizer news. 2001;46:45-52 and 55-57.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/119873