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ABSTRACT 
 

The article discusses various approaches and methods to combat overfitting, which is a key 
problem in the field of artificial intelligence. Overfitting occurs when the model over-adapts to the 
training dataset, losing the ability to generalize to new data. The main causes and signs of 
overfitting are also discussed, including excessive complexity of models and limited data. The focus 
is on methods such as regularization, dropout, and the use of ensemble methods that can 
significantly reduce the risk of overfitting. These approaches are evaluated using examples from 
various fields of neural network applications, providing the reader with a comprehensive 
understanding of the problem and its solution methods. 
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1. INTRODUCTION  
 

Deep learning is a machine learning approach 
that utilizes multilayer neural networks to 
automatically extract hierarchical representations 
from raw data. This method allows computer 
systems to improve their performance on the 
required task through experience, without the 
need for explicit programming of each step. 
 

Despite significant progress in deep learning, it 
faces several challenges, one of which is 
overfitting. Overfitting is a common and critical 
problem in deep learning where models show 
excellent performance on training data but fail to 
generalize well to unseen data. This 
phenomenon occurs when the model learns not 
only the underlying patterns in the training data 
but also the noise and outliers, leading to a 
significant decrease in predictive performance on 
new data. Addressing overfitting is crucial for 
developing robust, reliable, and effective deep 
learning models. 
 

The tendency towards overfitting is exacerbated 
by the complexity of deep learning models, which 
often consist of millions of parameters. These 
parameters provide the model with significant 
potential to fit the training data, but without 
proper regularization, this potential can lead to 
memorizing training examples rather than 
learning generalized patterns. To mitigate 
overfitting, various methods have been 
developed, enhancing the model's ability to 
generalize training data to real-world scenarios 
[1-5]. 
 

One of the fundamental methods to combat 
overfitting is regularization, which imposes 
penalties on large weights in the model, 
effectively limiting the model's complexity. 
Another widely-used technique is Dropout, which 
involves randomly turning off a fraction of 
neurons during training, preventing neurons from 

co-adapting and promoting a more robust 
learning process. 
 

Another practical approach is Early Stopping, 
which involves monitoring the model's 
performance on a validation set during training 
and stopping the training process once 
performance starts to deteriorate. This prevents 
the model from overfitting to the training data by 
limiting the amount of training. 
 

Increasing the volume of data is also a vital 
strategy, particularly in fields where obtaining 
large amounts of labeled data is challenging. 
Artificially expanding the training dataset with 
transformations such as rotation, translation, and 
scaling helps the model generalize better by 
exposing it to a broader range of examples [6]. 
 

In this article, we will explore the main methods 
of preventing overfitting in deep learning. We will 
provide a mathematical and conceptual overview 
of the Dropout method, followed by a practical 
implementation example using binomial 
distribution to model sales success across 
multiple stores. This implementation illustrates 
the application of theoretical concepts in a real 
scenario, demonstrating the effectiveness of 
these methods in enhancing the generalization 
capabilities of deep learning models. 
 

2. MATERIALS AND METHODS 
 

2.1 Causes of Overfitting 
 
Overfitting in deep learning models arises from 
several interrelated factors that lead the model to 
perform exceptionally well on training data but 
poorly on unseen data. Understanding these 
causes helps in developing strategies aimed at 
reducing overfitting and improving model 
generalization. The main causes of overfitting 
can be divided into three primary areas: model 
complexity, insufficient data, and data noise.

 

 
 

Fig. 1. Training examples 
1 - Underfitting; 2 - Optimum; 3 - Overfitting 
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The goal of training an artificial neural network 
(ANN) is to develop a model capable of 
adequately generalizing the learned patterns to 
data from any domain, which is critical for its 
ability to predict unseen data. The first step in 
combating overfitting involves simplifying the 
model by reducing the number of layers or 
neurons, with the key being the correct 
calculation of the input and output sizes of 
various layers of the neural network [7]. 
 
Overfitting in machine learning, especially in the 
context of neural networks, is a significant 
challenge that cannot be completely eliminated. 
This phenomenon is often caused by several 
factors: 
 

1. Model complexity relative to the amount of 
data: For instance, a model attempting to 
explore numerous solutions for a single 
task may start detecting non-existent 
patterns that are actually just noise in the 
data, if the complexity of the model does 
not match the volume and diversity of the 
provided information. 

2. Limited data availability: When the amount 
of available data is insufficient for training, 
the model may begin making conclusions 
based on atypical features or exceptions, 
thereby distorting its ability to generalize. 

3. Noise in the data: Similar to trying to 
understand a complex musical composition 
amidst background noise, noise in the data 
can cause the model to adapt to random 
rather than meaningful characteristics in 
the data. 

4. Neglecting validation data: Training a 
model without adequate testing and 
validation on a validation dataset can lead 
to the creation of an "illusory" model that 
performs well only on the training data. 

 
Recognizing and understanding these factors is 
crucial for developing robust and reliable 
machine learning systems. It is also important to 
identify signs of overfitting: 
 

● Performance Imbalance: High accuracy on 
the training dataset and poor results on 
test data often indicate overfitting. 

● Complex Decision Boundaries: If the visual 
analysis of decision boundaries shows 
excessive complexity or "capriciousness," 
it may indicate overfitting. 

● Performance Stagnation or Deterioration 
on Validation Data: Improvement in 
performance during initial training stages, 

followed by a slowdown or even 
deterioration while training data 
performance continues to grow, can be a 
sign of overfitting. 

● Performance Fluctuations with Training 
Data Changes: Significant performance 
fluctuations with minor changes in data can 
indicate excessive model sensitivity and a 
tendency to overfit [8,9]. 

 
One of the most obvious strategies to combat 
overfitting is to increase the volume and diversity 
of training data. For example, if a dataset 
includes not just six animals, but a thousand 
different individuals, it is likely to derive a more 
accurate rule. Instead of a simplistic heuristic like 
"who swims is a fish," which is not applicable to 
some birds like ducks or swans, a more accurate 
rule could be formulated, such as "those with 
gills are fish." 
 
However, it is necessary to consider not only the 
quantity but also the heterogeneity of the data. If 
the training set consisted of a thousand birds, 
none of which could swim, the rule "who swims is 
a fish" might still be derived by default. 
Therefore, both quantitative and qualitative 
diversity of data is essential for effective training. 
 
Imagine the scenario of developing an 
automated traffic control system. This system 
must decide whether to allow vehicles to 
continue moving or stop, based on various 
factors such as speed, traffic density, and road 
conditions. Suppose this decision-making 
process can be mathematically modeled, where 
the decision is based on a weighted sum of these 
factors. If this sum exceeds a certain threshold, 
the system allows the vehicle to continue 
moving; otherwise, it stops the vehicle. 
 
Consider the scenario where a vehicle 
approaches an intersection. Based on collected 
data and historical traffic patterns, the decision-
making formula might be as follows: a base 
score of 20 points, add 50 points for high traffic 
density, 30 points for unfavorable weather 
conditions, subtract 10 points for good road 
visibility, and 20 points for vehicle speed below 
the set limit, resulting in a total score of 70 
points. Since this score exceeds the threshold of 
50 points, the system decides to stop the vehicle. 
 
Historically, if the system never allowed vehicles 
to move under high traffic conditions, it could 
lead to the machine learning model assigning 
disproportionate weight to traffic density, 
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rendering all other factors insignificant. This 
scenario highlights the limitations and potential 
pitfalls of automated systems making decisions 
solely based on quantitative evaluations and 
historical data. 
 
Fortunately, to prevent excessive dominance of 
individual features during training, regularization 
techniques exist. This method restricts the 
influence of each factor, preventing 
disproportionately large weights in the model. 
 

2.2 Methods of Regularization and 
Overfitting Control 

 
To understand how a machine learning model 
operates, it's crucial to recognize that its primary 
task during training is to minimize the loss 
function, which quantifies the errors made on the 
training data set. Typically, the more errors, the 
higher the value of the loss function. 
 
The addition of regularization modifies the loss 
function such that it not only considers errors but 
also the magnitude of feature weights used in the 
model. As these weights increase, so does the 
value of the loss function, which helps prevent 
their excessive growth. This helps prevent the 
model from fitting noise in the training data, 
thereby improving its ability to generalize. 
 
The loss function 𝑓 can be expressed as a 
dependency on the target variable Y and the 
generalizing rule h(x), which represents the 
model expressing Y through a set of features x 
considering weights w: 
 

𝑓 (model errors) = 𝑓 (Y, h(x;w)) 
 
Regularization adds a penalty to the loss function 
for the magnitude of weights: 
 

L = f (Y, h(x;w)) + λ ⋅ R(w) 
 
Here, λ is the regularization coefficient, and R(w) 
is the regularization term penalizing weight 
magnitude to prevent their excessive increase. 
 
L1 and L2 regularization are two common 
methods that add penalties based on the size of 
the model parameters. L1 regularization (Lasso) 
adds a penalty equal to the absolute value of the 
coefficient size, promoting sparsity by reducing 
some weights to zero. L2 regularization (Ridge) 
adds a penalty equal to the square of the 
coefficient size, distributing the error across all 
parameters and preventing large weights. 

Mathematically, the regularized loss functions 
are defined as follows: 
 
L1 Regularization: L = f (Y, h(x;w)) + λ ⋅ ∑   

𝑖 |𝑤𝑖| 
L2 Regularization: L = f (Y, h(x;w)) + λ ⋅ ∑   

𝑖 𝑤𝑖
2 

 
In recent years, the use of L1 and L2 
regularization has remained highly relevant and 
has significantly evolved in the context of deep 
learning [10,11]. Modern research shows that the 
combined application of L1 and L2 regularization, 
known as Elastic Net, successfully minimizes the 
risk of overfitting by reducing model complexity 
while still highlighting important features [12]. For 
example, when using L2 regularization in logistic 
regression, a novel approach to hyperparameter 
tuning has been developed, allowing the 
optimization of regularization coefficients for 
each specific task [13]. Moreover, the application 
of regularization in deep neural networks has 
become more feasible due to the improved 
stability and computational efficiency of L2 
regularization, making it the preferred choice in 
most cases [14]. 
 
Furthermore, regularization has proven 
particularly effective in enhancing the 
performance of neural networks when dealing 
with small datasets. In such scenarios, L2 
regularization significantly reduces the risk of 
overfitting while maintaining high prediction 
accuracy, even with limited training data [15]. 
 
Regularization effectively guides the model 
training process to not solely focus on a few 
features but rather consider a diverse range of 
factors influencing the outcome. This process 
can be likened to thoughtful decision-making by 
a person, analyzing all available aspects of a 
situation to avoid missing any critical details [16]. 
 
Another regularization method specific to neural 
networks is Dropout. During training, Dropout 
randomly sets the output of each neuron to zero 
with a probability ppp, effectively removing it from 
the network for that iteration. This prevents 
neurons from overly relying on each other, 
encouraging the network to learn more robust 
and generalizable patterns. 
 
Mathematically, the Dropout mechanism can be 
expressed as: 
 

Output=Dropout(Input, p) 
 
Where the output of each neuron is zeroed out 
with probability p. This technique is highly 
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effective in preventing overfitting in deep neural 
networks, especially in fully connected layers. 
 

Early stopping is another simple yet powerful 
method for preventing overfitting. It involves 
monitoring the model's performance on a 
validation set during training and halting the 
training process when the performance on the 
validation set starts to deteriorate. This ensures 
the model does not overfit by learning noise and 
specific details unique to the training set. 
 

The early stopping process can be implemented 
as follows: 
 

1. Split the dataset into training and validation 
sets. 

2. Train the model and evaluate its 
performance on the validation set after each 
epoch. 

3. Stop training if the validation results do not 
improve for a specified number of epochs. 

 

Early stopping helps find the optimal number of 
training iterations, balancing between underfitting 
and overfitting. 
 

Data augmentation is another technique that 
involves artificially increasing the size and 
diversity of the training dataset by applying 
random transformations. This provides the model 
with a broader range of examples, helping it 
generalize better. 
 

In image processing, common augmentation 
methods include: 
 

● Rotation: Randomly rotating images within 
a specified range. 

● Shift: Shifting images horizontally or 
vertically. 

● Scaling: Resizing images to different 
scales. 

● Flipping: Mirroring images horizontally or 
vertically. 

 

For text data, augmentation methods may 
include: 
 

● Synonym Replacement: Replacing words 
with their synonyms. 

● Random Insertion: Adding random words 
to sentences. 

● Back Translation: Translating text into 
another language and back to the original 
language. 

 
Data augmentation effectively increases the 
diversity of the training dataset, reducing the risk 

of overfitting by making the model invariant to 
these transformations. 
 

Finally, Ensemble methods involve combining 
predictions from multiple models to improve 
overall performance and reduce overfitting. By 
averaging predictions from several models, 
ensembles reduce the variance associated with 
individual models, leading to better 
generalization. 
 

Let's consider the main ensembles: 
 

1. Bagging (Bootstrap Aggregating) involves 
training multiple models on different 
subsets of the training dataset and 
averaging their predictions. This reduces 
variance and helps obtain a more reliable 
model. A popular application of this 
method to decision trees is Random 
Forests. 

2. Boosting sequentially trains models where 
each new model focuses on correcting 
errors made by previous models. This 
method reduces both bias and variance, 
resulting in highly accurate models. 
Examples include AdaBoost and gradient 
boosters like GBM (Gradient Boosting 
Machines). 

3. Stacking involves training multiple models 
and then using another model (meta-
model) to combine their predictions. This 
allows leveraging the strengths of different 
models to achieve better performance 
[10,17]. 

 

2.3 Principle of Dropout 
 

Let's take a deeper look at the Dropout method. 
Dropout is a regularization method aimed at 
reducing overfitting in deep neural networks 
(DNNs) by preventing neurons from adapting too 
closely to specific training examples. The 
principle of dropout involves temporarily disabling 
certain neurons with a given probability during 
training, which reduces the network's 
dependency on specific connections and 
prevents co-adaptation among neurons in 
various layers. This leads to the development of 
a structure that does not overfit specific noise or 
artifacts in the training data. 
 

Research has shown that dropout enhances the 
generalization capabilities of neural networks in 
various tasks, including image classification, 
speech recognition, and text analysis, 
consistently achieving high performance on 
datasets such as SVHN, ImageNet, CIFAR100, 
and MNIST. 
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Fig. 2. Representation of the dropout method. Left: neural network before dropout is applied; 
right: the same network after dropout is applied [18] 

 

However, it is important to note that applying 
dropout increases the training time compared to 
standard models with the same architecture. This 
is because each training example impacts a 
randomly modified network architecture, resulting 
in gradients that may not always align with the 
gradients of the final structure used during 
testing. Despite the increased training time, the 
stochastic updates of parameters inherent to 
dropout help mitigate the risk of overfitting and 
enhance model robustness. 
 

The network shown on the left is used during 
testing after the parameters have been trained. 
The main idea of dropout is to train an ensemble 
of multiple DNNs and then average the results. 
This ensemble is formed by randomly dropping 
out neurons during the training phase with 
probability p, meaning each neuron is retained 
with probability q=1−p. The dropped neurons 
participate neither in the forward pass nor in the 
backpropagation, effectively training a different 
network in each forward and backward pass. 
 

Let ℎ(𝑥) = 𝑥𝑊 + 𝑏  represent a linear projection 
of the input vector x with dimensions di into an 
output space of dimension dh, and let a (h) 
denote the activation function. Applying Dropout 
during training can be formulated as a modified 
activation function: 
 

𝑓(ℎ) = 𝐷𝑎(ℎ) 
 

where 𝐷 = (𝑋1, . . . , 𝑋𝑑ℎ
)  is a dh-dimensional 

vector of Bernoulli random variables. Each Xi is 
defined as follows: 
 

𝑓(𝑘; 𝑝) = {1−𝑝,   𝑖𝑓 𝑘=0
𝑝,   𝑖𝑓 𝑘=1

 

where k represents all possible output values. 
 

This distribution ensures that a neuron is 
dropped with probability p and retained with 
probability q=1-p. For the i-th neuron, the output 
Oi after applying Dropout is expressed as: 
 

𝑂𝑖 = {0,                            если 𝑋𝑖=0

𝑎(𝛴𝑘=1

𝑑𝑖 𝑤𝑘𝑥𝑘+𝑏),если 𝑋𝑖=1
 

 

where 𝑃 = (𝑋𝑖 = 0) = 𝑝. 
 

During training, neurons are retained with 
probability q. However, during testing, to emulate 
the behavior of the ensemble networks used 
during training, activations are scaled by q: 
 

● Training phase: 𝑂𝑖 = 𝑋𝑖𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏) 

● Testing phase: 𝑂𝑖 = 𝑞𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏) 

 

An alternative approach is inverted dropout, 
where scaling is applied during the training 
phase rather than during testing. The activation 

function is scaled by 
1

𝑞
  during training: 

 

● Training phase: 𝑂𝑖 =
1

𝑞
𝑋𝑖𝑎(𝛴𝑘=1

𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏) 

● Testing phase: 𝑂𝑖 = 𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏) 

 

This approach simplifies implementation in many 
deep learning systems, as it requires defining the 
model once and applying Dropout by changing 
one parameter during training. Considering a 
layer h with n neurons, each training step can be 
viewed as an ensemble of n Bernoulli trials with a 
success probability p. The number of dropped 
neurons follows a binomial distribution: 
 

𝑌 ∼ 𝐵𝑖𝑛(𝑑ℎ , 𝑝) 
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The probability of k successes (retained neurons) 
out of n trials is given by the binomial probability 
mass function: 
 

𝑓(𝑘; 𝑛, 𝑝 = (𝑘
𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 

where (𝑘
𝑛)  is the binomial coefficient, 

representing the number of ways to choose k 
successes out of n trials [18,19]. 
 

3. RESULTS AND DISCUSSION 
 

Now, using this distribution, the modeling and 
visualization of the revenue distribution from N 
stores, where the probability of a successful sale 
varies in each store, was performed. This 
modeling is essential to understand how different 
probabilities affect sales outcomes, especially in 
environments where sales data are subject to 
variability and uncertainty. For this purpose, the 
binomial distribution was employed to model the 
number of successful sales in each store, and 
histograms were constructed for different values 
of success probability. 
 

The implementation included the following steps: 
 

1. Import necessary libraries: Python libraries 
such as `numpy`, `scipy.stats`, `pandas`, 
and `matplotlib` were used to facilitate the 
calculations and visualizations. 

2. Set initial parameters: Parameters 
including the number of stores (n_shops = 

50) and the number of trials (n_days = 30) 
were defined. 

3. Determine the number of successful sales 
for different probabilities: For each 
probability p, the expected number of 
successful sales was calculated using the 
binomial probability mass function 𝑃(𝑌 =
𝑘) = (𝑘

𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘. 
4. Build histograms for different success 

probability values: Histograms were 
constructed to visualize the distribution of 
successful sales for each probability value. 

 

For the binomial distribution Bi(n, p), the 
probability that exactly k out of n trials will be 
successful is defined as: 
 

𝑃(𝑌 = 𝑘) = (𝑘
𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 

1. (𝑘
𝑛) =

𝑛!

𝑘!(𝑛−𝑘)!
= 4060  represents the 

number of combinations to choose k 
successful sales out of n trials. 

2. 𝑝𝑘 = 0.13 = 0.001  is the probability of 
success. 

3. (1 − 𝑝)𝑛−𝑘 = (1 − 0.1)27 ≈ 0.042391 
 

Substituting these values into the formula gives: 
 

𝑃(𝑌 = 3) = 4060 × 0.001 × 0.042391 ≈ 0.172 
 

The following Python script was used to illustrate 
how many neurons will be deactivated for 
different values of p and a fixed number of n.

 

 
 

Fig. 3. Binomial distribution 
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Table 1. Python script 

 
import numpy as np 
from scipy.stats import binom 
import pandas as pd 
import matplotlib.pyplot as plt 
 
# number of stores 
n_shops = 50 
# number of trials (days) 
n_days = 30 
 
# function for calculating the probability of successful sales 
def calculate_probability(n, p, k): 
    return binom.pmf(k, n, p) 
 
# different probabilities of a successful sale 
probs = [0.1, 0.3, 0.5, 0.7, 0.9] 
expected_sales = [int(n_days * p) for p in probs] 
 
# calculate the probability for each value of p 
probabilities = [calculate_probability(n_days, p, k) for p, k in zip(probs, expected_sales)] 
 
# result output 
results = pd.DataFrame({ 
    'Probability (p)': probs, 
    'Expected Sales': expected_sales, 
    'Probability': probabilities 
}) 
 
import ace_tools as tools; tools.display_dataframe_to_user(name="Sales Probabilities", 
dataframe=results) 
 
# histogramming 
plt.figure(figsize=(12, 8)) 
 
for prob in probs: 
    # generate size values from bi(n_days, prob) 
    sales = binom.rvs(n_days, prob, size=n_shops) 
    # draw a histogram of random values 
    plt.hist( 
        sales, 
        bins=np.arange(0, n_days + 1, 1), 
        density=True, 
        color=np.random.rand(3,), 
        alpha=0.5, 
        label=f'p = {prob}') 
 
plt.title('Distribution of successful sales for different probabilities') 
plt.xlabel('Number of successful sales') 
plt.ylabel('Probability') 
plt.legend(loc='upper right') 
plt.grid(True) 
plt.show() 
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Fig. 3 illustrates the distribution of the number of 
successful sales for different success 
probabilities. Each colored layer in the histogram 
represents a different probability of successful 
sales, allowing a comparison of how success 
probability affects the distribution of sales counts. 
 

The binomial distribution model is particularly 
effective for scenarios where the outcome of 
interest is binary (success/failure) and the 
number of trials is fixed. When compared to other 
models such as the Poisson or Gaussian 
distributions, the binomial model accurately 
captures the variability in sales outcomes based 
on different success probabilities [20]. The 
Poisson distribution, for instance, is better suited 
for modeling the occurrence of rare events over 
time, but it does not inherently account for the 
fixed number of trials and binary outcomes 
central to the scenario analyzed here. Similarly, 
the Gaussian distribution may not effectively 
model the discrete outcomes of sales data, which 
further highlights the appropriateness of the 
binomial approach. 
 

4. CONCLUSION 
 

Thus, effectively overcoming overfitting in deep 
learning requires a comprehensive approach 
involving the application of various strategies and 
techniques. The methods discussed in the 
article, such as regularization, data 
augmentation, dropout, and ensemble methods, 
demonstrate significant effectiveness in reducing 
the risk of overfitting. Each method has its own 
characteristics and is best suited for specific 
types of tasks and data. Research shows that 
combining these methods can yield the best 
results in creating robust and reliable deep 
learning models. Understanding and correctly 
applying these approaches will enable 
researchers and developers to improve the 
generalization capability of models, which is 
critically important for their successful operation 
in real-world conditions. 
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