
++ Head of Data Analytics;
Senior Data Scientist;
*Corresponding author: E-mail: dyukarev-vv@sberbank.ru;

Cite as: Diukarev , Vladimir, and Yaroslav Starukhin. 2024. “Proposed Methods for Preventing Overfitting in Machine Learning
and Deep Learning”. Asian Journal of Research in Computer Science 17 (10):85-94.
https://doi.org/10.9734/ajrcos/2024/v17i10511.

Asian Journal of Research in Computer Science

Volume 17, Issue 10, Page 85-94, 2024; Article no.AJRCOS.120002
ISSN: 2581-8260

Proposed Methods for Preventing
Overfitting in Machine Learning

and Deep Learning

Vladimir Diukarev a++* and Yaroslav Starukhin b#

a Anti-Fraud Department, Sberbank, Moscow, Russian Federation.
b McKinsey & Company, Boston, USA.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: https://doi.org/10.9734/ajrcos/2024/v17i10511

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/120002

Received: 20/06/2024
Accepted: 24/08/2024
Published: 09/10/2024

ABSTRACT

The article discusses various approaches and methods to combat overfitting, which is a key
problem in the field of artificial intelligence. Overfitting occurs when the model over-adapts to the
training dataset, losing the ability to generalize to new data. The main causes and signs of
overfitting are also discussed, including excessive complexity of models and limited data. The focus
is on methods such as regularization, dropout, and the use of ensemble methods that can
significantly reduce the risk of overfitting. These approaches are evaluated using examples from
various fields of neural network applications, providing the reader with a comprehensive
understanding of the problem and its solution methods.

Keywords: Deep learning; overfitting, dropout; regularization; AI; artificial intelligence.

Original Research Article

https://doi.org/10.9734/ajrcos/2024/v17i10511
https://www.sdiarticle5.com/review-history/120002

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

86

1. INTRODUCTION

Deep learning is a machine learning approach
that utilizes multilayer neural networks to
automatically extract hierarchical representations
from raw data. This method allows computer
systems to improve their performance on the
required task through experience, without the
need for explicit programming of each step.

Despite significant progress in deep learning, it
faces several challenges, one of which is
overfitting. Overfitting is a common and critical
problem in deep learning where models show
excellent performance on training data but fail to
generalize well to unseen data. This
phenomenon occurs when the model learns not
only the underlying patterns in the training data
but also the noise and outliers, leading to a
significant decrease in predictive performance on
new data. Addressing overfitting is crucial for
developing robust, reliable, and effective deep
learning models.

The tendency towards overfitting is exacerbated
by the complexity of deep learning models, which
often consist of millions of parameters. These
parameters provide the model with significant
potential to fit the training data, but without
proper regularization, this potential can lead to
memorizing training examples rather than
learning generalized patterns. To mitigate
overfitting, various methods have been
developed, enhancing the model's ability to
generalize training data to real-world scenarios
[1-5].

One of the fundamental methods to combat
overfitting is regularization, which imposes
penalties on large weights in the model,
effectively limiting the model's complexity.
Another widely-used technique is Dropout, which
involves randomly turning off a fraction of
neurons during training, preventing neurons from

co-adapting and promoting a more robust
learning process.

Another practical approach is Early Stopping,
which involves monitoring the model's
performance on a validation set during training
and stopping the training process once
performance starts to deteriorate. This prevents
the model from overfitting to the training data by
limiting the amount of training.

Increasing the volume of data is also a vital
strategy, particularly in fields where obtaining
large amounts of labeled data is challenging.
Artificially expanding the training dataset with
transformations such as rotation, translation, and
scaling helps the model generalize better by
exposing it to a broader range of examples [6].

In this article, we will explore the main methods
of preventing overfitting in deep learning. We will
provide a mathematical and conceptual overview
of the Dropout method, followed by a practical
implementation example using binomial
distribution to model sales success across
multiple stores. This implementation illustrates
the application of theoretical concepts in a real
scenario, demonstrating the effectiveness of
these methods in enhancing the generalization
capabilities of deep learning models.

2. MATERIALS AND METHODS

2.1 Causes of Overfitting

Overfitting in deep learning models arises from
several interrelated factors that lead the model to
perform exceptionally well on training data but
poorly on unseen data. Understanding these
causes helps in developing strategies aimed at
reducing overfitting and improving model
generalization. The main causes of overfitting
can be divided into three primary areas: model
complexity, insufficient data, and data noise.

Fig. 1. Training examples
1 - Underfitting; 2 - Optimum; 3 - Overfitting

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

87

The goal of training an artificial neural network
(ANN) is to develop a model capable of
adequately generalizing the learned patterns to
data from any domain, which is critical for its
ability to predict unseen data. The first step in
combating overfitting involves simplifying the
model by reducing the number of layers or
neurons, with the key being the correct
calculation of the input and output sizes of
various layers of the neural network [7].

Overfitting in machine learning, especially in the
context of neural networks, is a significant
challenge that cannot be completely eliminated.
This phenomenon is often caused by several
factors:

1. Model complexity relative to the amount of
data: For instance, a model attempting to
explore numerous solutions for a single
task may start detecting non-existent
patterns that are actually just noise in the
data, if the complexity of the model does
not match the volume and diversity of the
provided information.

2. Limited data availability: When the amount
of available data is insufficient for training,
the model may begin making conclusions
based on atypical features or exceptions,
thereby distorting its ability to generalize.

3. Noise in the data: Similar to trying to
understand a complex musical composition
amidst background noise, noise in the data
can cause the model to adapt to random
rather than meaningful characteristics in
the data.

4. Neglecting validation data: Training a
model without adequate testing and
validation on a validation dataset can lead
to the creation of an "illusory" model that
performs well only on the training data.

Recognizing and understanding these factors is
crucial for developing robust and reliable
machine learning systems. It is also important to
identify signs of overfitting:

● Performance Imbalance: High accuracy on
the training dataset and poor results on
test data often indicate overfitting.

● Complex Decision Boundaries: If the visual
analysis of decision boundaries shows
excessive complexity or "capriciousness,"
it may indicate overfitting.

● Performance Stagnation or Deterioration
on Validation Data: Improvement in
performance during initial training stages,

followed by a slowdown or even
deterioration while training data
performance continues to grow, can be a
sign of overfitting.

● Performance Fluctuations with Training
Data Changes: Significant performance
fluctuations with minor changes in data can
indicate excessive model sensitivity and a
tendency to overfit [8,9].

One of the most obvious strategies to combat
overfitting is to increase the volume and diversity
of training data. For example, if a dataset
includes not just six animals, but a thousand
different individuals, it is likely to derive a more
accurate rule. Instead of a simplistic heuristic like
"who swims is a fish," which is not applicable to
some birds like ducks or swans, a more accurate
rule could be formulated, such as "those with
gills are fish."

However, it is necessary to consider not only the
quantity but also the heterogeneity of the data. If
the training set consisted of a thousand birds,
none of which could swim, the rule "who swims is
a fish" might still be derived by default.
Therefore, both quantitative and qualitative
diversity of data is essential for effective training.

Imagine the scenario of developing an
automated traffic control system. This system
must decide whether to allow vehicles to
continue moving or stop, based on various
factors such as speed, traffic density, and road
conditions. Suppose this decision-making
process can be mathematically modeled, where
the decision is based on a weighted sum of these
factors. If this sum exceeds a certain threshold,
the system allows the vehicle to continue
moving; otherwise, it stops the vehicle.

Consider the scenario where a vehicle
approaches an intersection. Based on collected
data and historical traffic patterns, the decision-
making formula might be as follows: a base
score of 20 points, add 50 points for high traffic
density, 30 points for unfavorable weather
conditions, subtract 10 points for good road
visibility, and 20 points for vehicle speed below
the set limit, resulting in a total score of 70
points. Since this score exceeds the threshold of
50 points, the system decides to stop the vehicle.

Historically, if the system never allowed vehicles
to move under high traffic conditions, it could
lead to the machine learning model assigning
disproportionate weight to traffic density,

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

88

rendering all other factors insignificant. This
scenario highlights the limitations and potential
pitfalls of automated systems making decisions
solely based on quantitative evaluations and
historical data.

Fortunately, to prevent excessive dominance of
individual features during training, regularization
techniques exist. This method restricts the
influence of each factor, preventing
disproportionately large weights in the model.

2.2 Methods of Regularization and
Overfitting Control

To understand how a machine learning model
operates, it's crucial to recognize that its primary
task during training is to minimize the loss
function, which quantifies the errors made on the
training data set. Typically, the more errors, the
higher the value of the loss function.

The addition of regularization modifies the loss
function such that it not only considers errors but
also the magnitude of feature weights used in the
model. As these weights increase, so does the
value of the loss function, which helps prevent
their excessive growth. This helps prevent the
model from fitting noise in the training data,
thereby improving its ability to generalize.

The loss function 𝑓 can be expressed as a
dependency on the target variable Y and the
generalizing rule h(x), which represents the
model expressing Y through a set of features x
considering weights w:

𝑓 (model errors) = 𝑓 (Y, h(x;w))

Regularization adds a penalty to the loss function
for the magnitude of weights:

L = f (Y, h(x;w)) + λ ⋅ R(w)

Here, λ is the regularization coefficient, and R(w)
is the regularization term penalizing weight
magnitude to prevent their excessive increase.

L1 and L2 regularization are two common
methods that add penalties based on the size of
the model parameters. L1 regularization (Lasso)
adds a penalty equal to the absolute value of the
coefficient size, promoting sparsity by reducing
some weights to zero. L2 regularization (Ridge)
adds a penalty equal to the square of the
coefficient size, distributing the error across all
parameters and preventing large weights.

Mathematically, the regularized loss functions
are defined as follows:

L1 Regularization: L = f (Y, h(x;w)) + λ ⋅ ∑

𝑖 |𝑤𝑖|
L2 Regularization: L = f (Y, h(x;w)) + λ ⋅ ∑

𝑖 𝑤𝑖
2

In recent years, the use of L1 and L2
regularization has remained highly relevant and
has significantly evolved in the context of deep
learning [10,11]. Modern research shows that the
combined application of L1 and L2 regularization,
known as Elastic Net, successfully minimizes the
risk of overfitting by reducing model complexity
while still highlighting important features [12]. For
example, when using L2 regularization in logistic
regression, a novel approach to hyperparameter
tuning has been developed, allowing the
optimization of regularization coefficients for
each specific task [13]. Moreover, the application
of regularization in deep neural networks has
become more feasible due to the improved
stability and computational efficiency of L2
regularization, making it the preferred choice in
most cases [14].

Furthermore, regularization has proven
particularly effective in enhancing the
performance of neural networks when dealing
with small datasets. In such scenarios, L2
regularization significantly reduces the risk of
overfitting while maintaining high prediction
accuracy, even with limited training data [15].

Regularization effectively guides the model
training process to not solely focus on a few
features but rather consider a diverse range of
factors influencing the outcome. This process
can be likened to thoughtful decision-making by
a person, analyzing all available aspects of a
situation to avoid missing any critical details [16].

Another regularization method specific to neural
networks is Dropout. During training, Dropout
randomly sets the output of each neuron to zero
with a probability ppp, effectively removing it from
the network for that iteration. This prevents
neurons from overly relying on each other,
encouraging the network to learn more robust
and generalizable patterns.

Mathematically, the Dropout mechanism can be
expressed as:

Output=Dropout(Input, p)

Where the output of each neuron is zeroed out
with probability p. This technique is highly

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

89

effective in preventing overfitting in deep neural
networks, especially in fully connected layers.

Early stopping is another simple yet powerful
method for preventing overfitting. It involves
monitoring the model's performance on a
validation set during training and halting the
training process when the performance on the
validation set starts to deteriorate. This ensures
the model does not overfit by learning noise and
specific details unique to the training set.

The early stopping process can be implemented
as follows:

1. Split the dataset into training and validation
sets.

2. Train the model and evaluate its
performance on the validation set after each
epoch.

3. Stop training if the validation results do not
improve for a specified number of epochs.

Early stopping helps find the optimal number of
training iterations, balancing between underfitting
and overfitting.

Data augmentation is another technique that
involves artificially increasing the size and
diversity of the training dataset by applying
random transformations. This provides the model
with a broader range of examples, helping it
generalize better.

In image processing, common augmentation
methods include:

● Rotation: Randomly rotating images within
a specified range.

● Shift: Shifting images horizontally or
vertically.

● Scaling: Resizing images to different
scales.

● Flipping: Mirroring images horizontally or
vertically.

For text data, augmentation methods may
include:

● Synonym Replacement: Replacing words
with their synonyms.

● Random Insertion: Adding random words
to sentences.

● Back Translation: Translating text into
another language and back to the original
language.

Data augmentation effectively increases the
diversity of the training dataset, reducing the risk

of overfitting by making the model invariant to
these transformations.

Finally, Ensemble methods involve combining
predictions from multiple models to improve
overall performance and reduce overfitting. By
averaging predictions from several models,
ensembles reduce the variance associated with
individual models, leading to better
generalization.

Let's consider the main ensembles:

1. Bagging (Bootstrap Aggregating) involves
training multiple models on different
subsets of the training dataset and
averaging their predictions. This reduces
variance and helps obtain a more reliable
model. A popular application of this
method to decision trees is Random
Forests.

2. Boosting sequentially trains models where
each new model focuses on correcting
errors made by previous models. This
method reduces both bias and variance,
resulting in highly accurate models.
Examples include AdaBoost and gradient
boosters like GBM (Gradient Boosting
Machines).

3. Stacking involves training multiple models
and then using another model (meta-
model) to combine their predictions. This
allows leveraging the strengths of different
models to achieve better performance
[10,17].

2.3 Principle of Dropout

Let's take a deeper look at the Dropout method.
Dropout is a regularization method aimed at
reducing overfitting in deep neural networks
(DNNs) by preventing neurons from adapting too
closely to specific training examples. The
principle of dropout involves temporarily disabling
certain neurons with a given probability during
training, which reduces the network's
dependency on specific connections and
prevents co-adaptation among neurons in
various layers. This leads to the development of
a structure that does not overfit specific noise or
artifacts in the training data.

Research has shown that dropout enhances the
generalization capabilities of neural networks in
various tasks, including image classification,
speech recognition, and text analysis,
consistently achieving high performance on
datasets such as SVHN, ImageNet, CIFAR100,
and MNIST.

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

90

Fig. 2. Representation of the dropout method. Left: neural network before dropout is applied;
right: the same network after dropout is applied [18]

However, it is important to note that applying
dropout increases the training time compared to
standard models with the same architecture. This
is because each training example impacts a
randomly modified network architecture, resulting
in gradients that may not always align with the
gradients of the final structure used during
testing. Despite the increased training time, the
stochastic updates of parameters inherent to
dropout help mitigate the risk of overfitting and
enhance model robustness.

The network shown on the left is used during
testing after the parameters have been trained.
The main idea of dropout is to train an ensemble
of multiple DNNs and then average the results.
This ensemble is formed by randomly dropping
out neurons during the training phase with
probability p, meaning each neuron is retained
with probability q=1−p. The dropped neurons
participate neither in the forward pass nor in the
backpropagation, effectively training a different
network in each forward and backward pass.

Let ℎ(𝑥) = 𝑥𝑊 + 𝑏 represent a linear projection
of the input vector x with dimensions di into an
output space of dimension dh, and let a (h)
denote the activation function. Applying Dropout
during training can be formulated as a modified
activation function:

𝑓(ℎ) = 𝐷𝑎(ℎ)

where 𝐷 = (𝑋1, . . . , 𝑋𝑑ℎ
) is a dh-dimensional

vector of Bernoulli random variables. Each Xi is
defined as follows:

𝑓(𝑘; 𝑝) = {1−𝑝, 𝑖𝑓 𝑘=0
𝑝, 𝑖𝑓 𝑘=1

where k represents all possible output values.

This distribution ensures that a neuron is
dropped with probability p and retained with
probability q=1-p. For the i-th neuron, the output
Oi after applying Dropout is expressed as:

𝑂𝑖 = {0, если 𝑋𝑖=0

𝑎(𝛴𝑘=1

𝑑𝑖 𝑤𝑘𝑥𝑘+𝑏),если 𝑋𝑖=1

where 𝑃 = (𝑋𝑖 = 0) = 𝑝.

During training, neurons are retained with
probability q. However, during testing, to emulate
the behavior of the ensemble networks used
during training, activations are scaled by q:

● Training phase: 𝑂𝑖 = 𝑋𝑖𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏)

● Testing phase: 𝑂𝑖 = 𝑞𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏)

An alternative approach is inverted dropout,
where scaling is applied during the training
phase rather than during testing. The activation

function is scaled by
1

𝑞
 during training:

● Training phase: 𝑂𝑖 =
1

𝑞
𝑋𝑖𝑎(𝛴𝑘=1

𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏)

● Testing phase: 𝑂𝑖 = 𝑎(𝛴𝑘=1
𝑑𝑖 𝑤𝑘𝑥𝑘 + 𝑏)

This approach simplifies implementation in many
deep learning systems, as it requires defining the
model once and applying Dropout by changing
one parameter during training. Considering a
layer h with n neurons, each training step can be
viewed as an ensemble of n Bernoulli trials with a
success probability p. The number of dropped
neurons follows a binomial distribution:

𝑌 ∼ 𝐵𝑖𝑛(𝑑ℎ , 𝑝)

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

91

The probability of k successes (retained neurons)
out of n trials is given by the binomial probability
mass function:

𝑓(𝑘; 𝑛, 𝑝 = (𝑘
𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘

where (𝑘
𝑛) is the binomial coefficient,

representing the number of ways to choose k
successes out of n trials [18,19].

3. RESULTS AND DISCUSSION

Now, using this distribution, the modeling and
visualization of the revenue distribution from N
stores, where the probability of a successful sale
varies in each store, was performed. This
modeling is essential to understand how different
probabilities affect sales outcomes, especially in
environments where sales data are subject to
variability and uncertainty. For this purpose, the
binomial distribution was employed to model the
number of successful sales in each store, and
histograms were constructed for different values
of success probability.

The implementation included the following steps:

1. Import necessary libraries: Python libraries
such as `numpy`, `scipy.stats`, `pandas`,
and `matplotlib` were used to facilitate the
calculations and visualizations.

2. Set initial parameters: Parameters
including the number of stores (n_shops =

50) and the number of trials (n_days = 30)
were defined.

3. Determine the number of successful sales
for different probabilities: For each
probability p, the expected number of
successful sales was calculated using the
binomial probability mass function 𝑃(𝑌 =
𝑘) = (𝑘

𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘.
4. Build histograms for different success

probability values: Histograms were
constructed to visualize the distribution of
successful sales for each probability value.

For the binomial distribution Bi(n, p), the
probability that exactly k out of n trials will be
successful is defined as:

𝑃(𝑌 = 𝑘) = (𝑘
𝑛)𝑝𝑘(1 − 𝑝)𝑛−𝑘

1. (𝑘
𝑛) =

𝑛!

𝑘!(𝑛−𝑘)!
= 4060 represents the

number of combinations to choose k
successful sales out of n trials.

2. 𝑝𝑘 = 0.13 = 0.001 is the probability of
success.

3. (1 − 𝑝)𝑛−𝑘 = (1 − 0.1)27 ≈ 0.042391

Substituting these values into the formula gives:

𝑃(𝑌 = 3) = 4060 × 0.001 × 0.042391 ≈ 0.172

The following Python script was used to illustrate
how many neurons will be deactivated for
different values of p and a fixed number of n.

Fig. 3. Binomial distribution

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

92

Table 1. Python script

import numpy as np
from scipy.stats import binom
import pandas as pd
import matplotlib.pyplot as plt

number of stores
n_shops = 50
number of trials (days)
n_days = 30

function for calculating the probability of successful sales
def calculate_probability(n, p, k):
 return binom.pmf(k, n, p)

different probabilities of a successful sale
probs = [0.1, 0.3, 0.5, 0.7, 0.9]
expected_sales = [int(n_days * p) for p in probs]

calculate the probability for each value of p
probabilities = [calculate_probability(n_days, p, k) for p, k in zip(probs, expected_sales)]

result output
results = pd.DataFrame({
 'Probability (p)': probs,
 'Expected Sales': expected_sales,
 'Probability': probabilities
})

import ace_tools as tools; tools.display_dataframe_to_user(name="Sales Probabilities",
dataframe=results)

histogramming
plt.figure(figsize=(12, 8))

for prob in probs:
 # generate size values from bi(n_days, prob)
 sales = binom.rvs(n_days, prob, size=n_shops)
 # draw a histogram of random values
 plt.hist(
 sales,
 bins=np.arange(0, n_days + 1, 1),
 density=True,
 color=np.random.rand(3,),
 alpha=0.5,
 label=f'p = {prob}')

plt.title('Distribution of successful sales for different probabilities')
plt.xlabel('Number of successful sales')
plt.ylabel('Probability')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

93

Fig. 3 illustrates the distribution of the number of
successful sales for different success
probabilities. Each colored layer in the histogram
represents a different probability of successful
sales, allowing a comparison of how success
probability affects the distribution of sales counts.

The binomial distribution model is particularly
effective for scenarios where the outcome of
interest is binary (success/failure) and the
number of trials is fixed. When compared to other
models such as the Poisson or Gaussian
distributions, the binomial model accurately
captures the variability in sales outcomes based
on different success probabilities [20]. The
Poisson distribution, for instance, is better suited
for modeling the occurrence of rare events over
time, but it does not inherently account for the
fixed number of trials and binary outcomes
central to the scenario analyzed here. Similarly,
the Gaussian distribution may not effectively
model the discrete outcomes of sales data, which
further highlights the appropriateness of the
binomial approach.

4. CONCLUSION

Thus, effectively overcoming overfitting in deep
learning requires a comprehensive approach
involving the application of various strategies and
techniques. The methods discussed in the
article, such as regularization, data
augmentation, dropout, and ensemble methods,
demonstrate significant effectiveness in reducing
the risk of overfitting. Each method has its own
characteristics and is best suited for specific
types of tasks and data. Research shows that
combining these methods can yield the best
results in creating robust and reliable deep
learning models. Understanding and correctly
applying these approaches will enable
researchers and developers to improve the
generalization capability of models, which is
critically important for their successful operation
in real-world conditions.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that they have no known
competing financial interests or non-financial

interests or personal relationships that could
have appeared to influence the work reported in
this paper.

REFERENCES

1. Li H, Rajbahadur GK, Lin D, Bezemer CP,

Jiang ZM. keeping deep learning models in
check: A history-based approach to
mitigate overfitting. IEEE Access; 2024
May 17.

2. Li H, Li J, Guan X, Liang B, Lai Y, Luo X.
Research on overfitting of deep
learning. In2019 15th international
conference on computational intelligence
and security (CIS). IEEE. 2019 Dec 13;78-
81.

3. Santos CF, Papa JP. Avoiding overfitting:
A survey on regularization methods for
convolutional neural networks. ACM
Computing Surveys (CSUR). 2022 Sep
14;54(10s):1-25.

4. Liang J, Liu R. Stacked denoising
autoencoder and dropout together to
prevent overfitting in deep neural network.
In2015 8th international congress on
image and signal processing (CISP). IEEE.
2015 Oct 14;697-701.

5. Ying X. An overview of overfitting and its
solutions. In Journal of physics:
Conference series. IOP Publishing. 2019
Feb;1168:022022.

6. Overfitting: Preventing model risk by using
methods to prevent overfitting. [Electronic
resource];2024.
Available:https://fastercapital.com/ru/conte
nt/.html (accessed 8.05.2024).

7. Pichugin RA. Methods of combating
overfitting in neural networks. International
Journal of Humanities and Natural
Sciences. 2022;7-2(70):99-103.

8. In simple words, about the methods of
solving problems with overfitting.
[Electronic resource]; 2024.
Available:https://newtechaudit.ru/overfitting
/ (accessed 8.05.2024).

9. Kurgan NS, Sinitsyn VV, Gubanova AA.
The problem of retraining in neural
networks. Proceedings of the XV
International Student Scientific Conference
"Student Scientific Forum". [Electronic
resource]; 2024.
Available:https://scienceforum.ru/2023/artic
le/2018032606 (accessed 8.05.2024).

10. Overfitting of the model: the essence and
impact on the results. [Electronic
resource]; 2024.

Diukarev and Starukhin; Asian J. Res. Com. Sci., vol. 17, no. 10, pp. 85-94, 2024; Article no.AJRCOS.120002

94

Available:https://www.decosystems.ru/pere
obuchenie-modeli-v-mashinnom-obuchenii/
(accessed 8.05.2024).

11. Ponce C, Li R, Mao C, Vassilevski P.
Multilevel-in-width training for deep neural
network regression. Numerical Linear
Algebra with Applications; 2023.

12. Fang P, Wang X, Ge J, Li J, Yang Z,
Nai W. Elastic Network Regression
Based on Sobol Sequence Initialized
Lightning Attachment Procedure
Optimization. 2023 IEEE 14th International
Conference on Software Engineering
and Service Science (ICSESS). 2023;252-
257.

13. Long L, Lang J. Regularization for
unsupervised learning of optical flow.
Sensors (Basel, Switzerland); 2023.

14. Lu P, Rashid A, Kobyzev I,
Rezagholizadeh M, Langlais P. LABO:
Towards learning optimal label
regularization via Bi-level optimization.
2023;ArXiv:5759-5774.

15. Wang C, Chen J, Liu Y. The elastic net
regularized extreme learning machine for

state of charge estimation. Journal of The
Electrochemical Society; 2023.

16. Abramovich F. Statistical learning by
sparse deep neural networks.
2023;ArXiv:abs/2311.08845.

17. Methods of combating overfitting of
artificial neural networks. [Electronic
resource]; 2024.
Available:https://na-journal.ru/2-2019-
tehnicheskie-nauki/1703-metody-borby-s-
pereobucheniem-iskusstvennyh-neironnyh-
setei (accessed 8.05.2024).

18. Dropout is a method for solving the
problem of overfitting in neural networks.
[Electronic resource]; 2024.
Available:https://habr.com/ru/companies/w
underfund/articles/330814 / (accessed
8.05.2024).

19. Abrarov R. D. Implementation of the
Dropout method, Young scientist. 2022;
43(438):1-5.

20. Sabiri B, El Asri B, Rhanoui M. Mechanism
of overfitting avoidance techniques for
training deep neural networks. InICEIS.
2022;1:418-427.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/120002

https://www.sdiarticle5.com/review-history/120002

