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ABSTRACT 
 

Aims: To explore and synthesize current knowledge on botanical pest management, emphasizing 
plant-pest interactions from evolutionary, molecular, and ecological perspectives. This study 
evaluates plant-based compounds and biotechnological approaches as sustainable alternatives to 
synthetic pesticides. 
Study Design: A comprehensive review of scientific literature on botanical pest management, 
focusing on interdisciplinary approaches. 
Methodology: The study reviews data on plant chemical defenses, molecular interactions, and 
biotechnological innovations for sustainable pest control. It analyzes plant-derived compounds' 
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capacity to disrupt pest physiology with minimal ecological impact. Insights from genomics, 
molecular biology, and ecology are integrated to propose a sustainable pest management 
framework. 
Results: Botanical pesticides demonstrated effectiveness in targeting pest physiological pathways 
while reducing ecological disturbances. Molecular studies revealed significant interactions between 
plant-derived compounds and pest systems, supported by advanced biotechnological methods. 
Genomic and ecological research underscored a balanced approach to enhancing agricultural 
productivity while minimizing environmental harm. 
Conclusion: Botanical pest management is a promising, sustainable alternative to synthetic 
pesticides. It addresses current agricultural challenges while fostering long-term ecological 
sustainability. The findings highlight the potential of plant-based strategies to advance precise, eco-
friendly pest control methods aligned with global sustainability goals. Further research is essential 
to validate and expand these solutions across diverse agricultural systems. 
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1. INTRODUCTION 
 

1.1 Evolution of Plant Chemical Defenses 
 
Over millions of years, plants have developed 
various chemical defense mechanisms against 
pests (Huot et al., 2013; Zhu-Salzman et al., 
2005). These defenses include constitutive and 
inducible strategies to protect against pathogens 
and herbivorous insects (Arnason & Bernards, 
2010; Fürstenberg-Hägg et al., 2013). 
Constitutive defenses consist of preformed 
barriers, such as cutin and suberin, and 
biologically active inhibitors always present in 
plant tissues (Arnason & Bernards, 2010). 
Inducible defenses activate upon pest attack, 
involving complex physiological and biochemical 
processes such as jasmonic acid and salicylic 
acid pathways, calcium flux, reactive oxygen 
species burst, and mitogen-activated protein 
kinase activation (Wang et al., 2023). Plants 
generate a wide range of bioactive molecules, 
including antimicrobial, antifeedant, and 
phototoxic compounds, to counter evolving pest 
strategies (Arnason & Bernards, 2010; 
Fürstenberg-Hägg et al., 2013). They have also 
evolved cost-effective strategies such as 
producing glandular trichomes, latex, 
accumulating specific metabolites, and preparing 
defense pathways in advance for transmission to 
descendants (Zhou et al., 2022). Some plants 
engage external organisms or cooperate with 
relatives for protection, reducing defense costs 
(Zhou et al., 2022). The evolutionary arms race 
with pests has led to diverse and redundant 
defense mechanisms, crucial for slowing pest 
resistance to host-plant defenses (Arnason & 
Bernards, 2010; Huot et al., 2013). 
 

1.2 Biochemical Pathways in Plant 
Resistance 

 

Plant resistance strategies involve intricate 
biochemical pathways comprising signaling 
molecules, hormones, and metabolites, leading 
to defensive compounds and immune responses. 
Phytohormones, such as salicylic acid, jasmonic 
acid, ethylene, and abscisic acid, regulate 
responses to pathogens like Botrytis cinerea 
(Abuqamar et al., 2017). Salicylic acid, crucial for 
resistance, is synthesized via the isochorismate 
and phenylalanine ammonia-lyase pathways 
(Ding & Ding, 2020). Pipecolic acid, derived from 
lysine catabolism, enhances defense responses 
and systemically acquired resistance (Zeier, 
2013). Amino acid metabolism, particularly Asp-
derived amino acid biosynthesis, affects 

pathogen resistance, with imbalances in 
homoserine or threonine levels potentially 
increasing immunity against oomycetes (Zeier, 
2013). Phyto-oxylipins, generated by oxidative 
transformation of unsaturated fatty acids, 
contribute to defense mechanisms (Blée, 2002). 
Understanding these complex biochemical 
networks is essential for developing enhanced 
resistance through genetic engineering and 
breeding (Abuqamar et al., 2017; Jirschitzka et 
al., 2012). 
 

1.3 Genomic Insights into Plant–pest 
Interactions 

 
Comparative genomic analysis serves as a 
powerful tool for elucidating the universal 
principles of plant-pest interactions. Through the 
utilization of high-throughput sequencing and 
bioinformatics, conserved genetic mechanisms in 
plant defense and pest virulence across species 
are identified. (Sironi et al., 2015; Sturdevant et 
al., 2010). Studies have shown that genes 
involved in plant defense and pathogen virulence 
are highly polymorphic, reflecting the 
evolutionary arms race between plants and pests 
(Karasov et al., 2014). This genetic diversity 
results from complex ecological interactions and 
selective pressures. Comparative analyses have 
uncovered common gene expression responses 
in host cells to various infectious stimuli, 
indicating some universal defense mechanisms 
(Diehn & Relman, 2001). However, there is often 
a disconnect between real-world plant-pest 
interactions and the simplified models used 
(Karasov et al., 2014). To address this, 
integrative approaches combining comparative 
genomics with transcriptomics, proteomics, and 
metabolomics are used to assess insect 
resistance at multiple biological levels (Gado and 
Alviar, 2022). Novel methods, such as using non-
target sequencing reads as phenotyping proxies, 
show promise for studying natural variation in 
plant pest resistance efficiently (Galanti et al., 
2024). Advances in ecological genomics will 
likely reveal more universal principles governing 
plant-pest interactions. 
 

2. MOLECULAR DIVERSITY AND 
MECHANISM OF ACTION 

 

2.1 Structure and Efficacy of Plant-
Derived Pesticides 

 

Plant-derived pesticides have structural features 
influencing their pest control efficacy. Botanical 
pesticides contain various active components 
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contributing to diverse action modes and 
effectiveness (Miresmailli, 2013; Oliveira et al., 
2019). These components often synergize to 
enhance activity and reduce pest resistance 
(Koul & Walia, 2009; Oliveira et al., 2019). Their 
chemical structure affects stability, volatility, and 
release mechanisms, impacting efficacy 
(Miresmailli, 2013; Oliveira et al., 2019). The 
release of eugenol and cinnamaldehyde from 
nanoparticles is temperature-sensitive, affecting 
bioavailability (Oliveira et al., 2019). Odorant 
binding proteins (OBPs) in insect sensory organs 
bind and transport hydrophobic odorant 
molecules, influencing behaviors like host 
location, mating, and oviposition (Rana et al., 
2024). Botanical pesticide efficacy varies by pest 
species; tobacco-derived insecticides are more 
effective against citrus aphids than citrus psyllids 
(Wuryantini et al., 2021). Volatilization patterns of 
botanical insect repellents can vary with time and 
factors like gender, ethnicity, and skin condition 
(Miresmailli, 2013). Understanding these factors 
is crucial for developing effective, sustainable 
botanical pesticides for integrated pest 
management (Dao et al., 2021; Oliveira et al., 
2019; Villaverde et al., 2016). 
 

2.2 Phytochemical Variations in Pest 
Management 

 

Phytochemical variations significantly affect pest 
management strategies and integrated pest 
management (IPM) efficacy. Utilizing 
phytochemicals through host plant resistance is 
crucial for IPM, particularly in field crops like 
maize and alfalfa, where insecticide use is often 
uneconomical (Horn, 2019). However, extreme 
temperatures can induce stress in arthropods 
and host plants, potentially altering their 
resistance mechanisms (Horn, 2019). Chemical 
ecology, including pheromones and 
semiochemicals, offers promising alternatives to 
broad-spectrum toxicants (Pickett et al., 1997). 
Phytochemical-based methods can be integrated 
with host-masking agents, repellents, 
antifeedants, or oviposition deterrents in a 
multifaceted approach known as the stimulo-
deterrent diversionary strategy (SDDS) to 
manipulate pest behaviour and reduce 
conventional pesticide use (Pickett et al., 1997). 
Incorporating host plant resistance, 
semiochemicals, and other phytochemical-based 
methods into IPM programs aligns with public 
preference for bio-rational pest control 
alternatives (VanRyckeghem, 2011) and 
supports the development of innovative and 
sustainable agricultural practices. 

2.3 Molecular Interactions in Pest 
Disruption  

 
Molecular interactions disrupting pest physiology 
involve various mechanisms, where SubCELL, a 
database of subcellular compartment-specific 
interactions among DNAs, RNAs, and proteins, 
facilitates understanding and potential disruption 
of pest physiology at the molecular level (Zhang 
et al., 2024), while kairomones mediate host-
plant selection and enhance natural enemy 
effectiveness in biocontrol (Murali-Baskaran et 
al., 2017). Plants have evolved sophisticated 
defense mechanisms, including the release of 
volatile organic compounds (VOCs) that attract 
natural enemies of pests and facilitate plant-plant 
communication (Pérez-Hedo et al., 2024), with 
specific compounds like (Z)-3-hexenyl 
propanoate activating defense mechanisms in 
citrus plants (Pérez-Hedo et al., 2024). These 
defenses involve multiple components: molecular 
markers for studying pest genetics and 
population dynamics (Ibrahim et al., 1997), 
paratransgenesis for modifying bacterial 
symbiont relationships in heteropteran pests 
(Prado & Zucchi, 2012), and defense proteins 
like NBS-LRR that recognize pathogens (Liu et 
al., 2023). The defense response involves 
complex signaling cascades, including jasmonic 
acid and salicylic acid pathways (Ali et al., 2024), 
while plants must balance resource allocation 
between growth and defense, influenced by light 
perception (Breen et al., 2023). Climate change 
impacts pest physiology and behavior through 
thermal traits and environmental interactions 
(Patterson et al., 1999; Terblanche et al., 2015), 
and lipids serve as important mediators in plant 
defense signaling cascades (Seth et al., 2023). 
This comprehensive understanding of plant 
defense mechanisms is crucial for developing 
innovative pest management strategies and 
improving crop resistance (Hasan et al. 2023; 
Kansman et al., 2023; Li et al., 2023). 
 

3. ECOSYSTEM-LEVEL INTERACTIONS 
AND SUSTAINABILITY 

 

3.1 Ecological Impact of Botanical 
Pesticides 

 

Botanical pesticides, derived from plant 
compounds, are a promising alternative to 
synthetic pesticides, modulating ecological 
networks with minimal adverse effects on non-
target organisms and the environment (Jyoti, 
2024; Ahmed et al., 2022). Targeting specific 
pests, these pesticides leave minimal residues 
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and possess insecticidal, antifeedant, or repellent 
properties, making them ideal for organic food 
production and post-harvest protection (Ahmed 
et al., 2022). Botanical pesticides are less 
disruptive to trophic interactions and ecosystems 
compared to synthetic pesticides, aligning better 
with integrated pest management strategies 
(Beringue et al., 2024; Jyoti, 2024). However, 
their impact on soil microbial biodiversity varies, 
with some extracts decreasing and others 
increasing microbial populations (Salamiah & 
Aidawati, 2022), highlighting the complexity of 
ecological networks and the need for careful 
consideration when using these pesticides. 
Botanical pesticides offer a selective and 
environmentally friendly approach to pest 
management, but further research is necessary 
to fully understand their ecosystem effects and 
optimize their use in integrated pest 
management strategies (Jyoti, 2024; Dang et al., 
2012). 
 

3.2 Ecosystem Adaptations to Plant-
Derived Interventions 

 
Plant-derived interventions trigger long-term 
ecosystem adaptations through complex 
species-environment interactions. Changes in 
specific leaf area (SLA) indicate plant strategies 
for resource acquisition and environmental 
adaptation (Liu et al., 2022), influencing 
ecosystem structure and function. Long-term 
responses include shifts in species composition, 
changes in productivity, and alterations in 
ecosystem services. Short-term losses from plant 
interventions may be offset by long-term 
biodiversity and ecosystem health gains (Sun et 
al. 2012). It is essential to consider both the 
immediate and long-term effects when evaluating 
ecosystem responses. Environmental hormesis 
suggests that mild stressors can enhance plant 
resilience against stronger stressors (Erofeeva, 
2021). Understanding these multilevel 
adaptations is crucial for predicting ecosystem 
dynamics and informing management strategies, 
despite the complexity and slow pace of some 
processes, necessitating ongoing research and 
monitoring (Maček et al., 2016). 
 

3.3 Botanical Pesticides as Selective 
Pressures 

 

Botanical pesticides can function as selective 
pressure mechanisms in agriculture, providing 
targeted pest management compared to 
synthetic pesticides. These plant-derived 
compounds possess specific modes of action 

that affect pests while minimizing harm to 
beneficial organisms (Dao et al., 2021). Their 
diverse mechanisms can target insect 
physiology, including the nervous system, 
resulting in loss of coordination, paralysis, and 
mortality (Gupta et al. 2024). This specificity 
enables precise pest control while preserving 
natural enemies and pollinators (Ndakidemi et 
al., 2016; Samanta et al., 2023). Neem seed 
extract demonstrated comparable effectiveness 
to synthetic emamectin benzoate in controlling 
lepidopteran pests on tomatoes, while proving 
more cost-effective (Akhter et al., 2023). Carlina 
oxide isolated from Carlina acaulis roots 
exhibited selective toxicity against the spider mite 
Tetranychus urticae without harming its natural 
predator Neoseiulus californicus (Rizzo et al., 
2023). Despite being less harmful to non-target 
organisms, botanical pesticides can adversely 
affect beneficial insects if improperly utilized 
(Ndakidemi et al., 2016; Samanta et al., 2023). 
This can result in pest resurgence and secondary 
outbreaks. Consequently, their use should be 
optimized within integrated pest management 
programs, with appropriate dosages and 
selective application, to maintain ecological 
equilibrium (Gupta et al., 2024; Ndakidemi et al., 
2016). 
 

4. BIOTECHNOLOGICAL CONVERGENCE 
AND PRECISION MANAGEMENT 

 

4.1 Biotechnology in Optimizing Plant-
Based Pesticides 

 

Biotechnological techniques, such as genetic 
engineering, CRISPR-Cas9, and RNA 
interference, optimize plant-based pesticides by 
enhancing pesticidal compound production, 
modifying plants to express insecticidal proteins, 
and specifically targeting pests while sparing 
non-target organisms (Sharma et al., 2024). 
Plant essential oils serve as broad-spectrum, 
low-toxicity biopesticides, and biotechnology 
refines their extraction, formulation, and delivery, 
with nanotechnology enhancing the stability and 
efficacy of nano-encapsulated essential oils 
(Mwamburi, 2022; Villarreal et al., 2023). 
Bioassay-directed isolation, chemical 
characterization, combinatorial chemistry, and 
high-throughput screening accelerate the 
discovery, optimization, and production of novel 
plant-based pesticides and their synthetic 
derivatives (Gonzalez-Coloma et al., 2010). 
These methods improve the efficacy, specificity, 
and environmental safety of plant-based 
pesticides, addressing traditional biopesticide 
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limitations while maintaining eco-friendly benefits 
(Bilgrami & Khan, 2022; Wend et al., 2024). 
 

4.2 Innovative Delivery Technologies for 
Botanical Pesticides 

 
Innovative delivery technologies have greatly 
improved the effectiveness of botanical 
pesticides, thereby addressing the challenges in 
agriculture and pest management. 
Microencapsulation enhances the formulation of 
plant essential oil active ingredients, enabling the 
development of new products (Paluch et al., 
2011). This method addresses stability issues 
and other limitations that have hindered the 
large-scale use of botanical pesticides (Dao et 
al., 2021). Nano-encapsulation ensures precise 
pesticide delivery to plant tissues, increases 
effectiveness, and reduces chemical usage 
(Mmbando, 2024). The integration of 
nanotechnology with botanical pesticides has led 
to the development of efficient formulations that 
overcome degradation, instability, and 
volatilization (Oliveira et al., 2018). This 
amalgamation represents a sustainable 
agricultural approach, optimizing resource use 
and minimizing environmental impact. Ultimately, 
technologies such as microencapsulation, nano-
encapsulation, and other nanotechnology-based 
methods are vital for enhancing botanical 
pesticide efficiency and improving stability, 
delivery precision, and overall efficacy. Ongoing 
research in this field promises more sustainable 
and effective pest management solutions for 
agriculture. 
 

4.3 Precision Agriculture in Botanical 
Pest Management 

 

Precision agriculture (PA) integrates advanced 
botanical pest management for sustainable crop 
protection, utilizing PA's technological 
capabilities with eco-friendly pest control 
methods for targeted pest management. 
Technologies like GPS, remote sensing, and 
data analytics enhance botanical pest strategies 
(Balaji et al., 2024; Tangkesalu et al., 2023). 
Drones with multispectral sensors detect early 
pest infestations or plant stress, enabling timely 
botanical pesticide application (Aldosari, 2024; 
Gundreddy et al., 2024). This precision reduces 
pesticide use, minimizes environmental impacts, 
and supports sustainability (Kayastha et al., 
2024; Sharma, 2023). AI and machine learning 
analyze complex datasets, including soil, 
weather, and pest data, to optimize pest control 
strategies (Aldosari, 2024; Divyajyothi et al., 

2024). These technologies predict pest 
outbreaks and tailor botanical pesticide 
interventions. Integrating advanced botanical 
pest strategies with PA offers sustainable crop 
protection, combining precision with ecological 
benefits for effective management and reduced 
environmental impacts (Khan, 2024; Khokhar et 
al., 2024). Challenges like technology access 
and farmer training must be addressed for 
widespread adoption (Anand et al., 2023; 
Sharma, 2023). 
 

5. SUSTAINABLE DEVELOPMENT AND 
TRANSFORMATIVE STRATEGIES 

 

5.1 Botanical Pest Management and 
Sustainability Goals 

 

Botanical pest management supports global 
sustainability by providing eco-friendly 
alternatives to conventional pesticides, aligning 
with United Nations Sustainable Development 
Goals (SDGs) on food security, environmental 
protection, and sustainable production. Plant-
based pesticides in grain storage offer 
sustainable pest control with low non-target 
toxicity and compatibility with integrated pest 
management (Jyoti, 2024), promoting 
Responsible Consumption and Production (SDG 
12). Biologically based pest management 
strategies, including plant defense mechanisms, 
enhance sustainable integrated pest 
management programs (Chidawanyika et al., 
2012), contributing to SDG 2 (Zero Hunger) by 
ensuring food security and reducing 
environmental impacts. Botanical gardens, like 
the University of British Columbia Botanical 
Garden, advance sustainable pest management 
and contribute to 12 of the 17 SDGs through ex 
situ plant conservation, sustainability education, 
and community engagement (Lopez-Villalobos et 
al., 2022). These institutions serve as crucial 
research and education centers for sustainable 
pest management, essential for achieving the 
SDGs and ensuring long-term ecological and 
economic sustainability in agriculture, particularly 
as climate change affects pest dynamics. 
 

5.2 Economic Valuation of Ecological 
Pest Management 

 

Economic models valuing ecological pest 
management services reflect the complex 
dynamics of agricultural ecosystems and market 
forces. Microeconomic models estimate the 
value of natural enemy species richness for 
biological pest control by analyzing market 
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outcomes affected by crop yield changes, supply 
shifts, and price elasticities (Letourneau et al., 
2015). Dynamic bioeconomic optimization 
models integrate pest and predator dynamics, 
crop growth, yield damage functions, and 
managerial decisions to determine optimal 
insecticide use while considering natural pest 
control (Zhang & Swinton, 2009). Market forces 
and technological substitutes can significantly 
affect ecosystem service valuations over time, 
even with constant ecosystem functions. For 
instance, the pest control value provided by 
Mexican free-tailed bats declined by 79% over 18 
years due to Bt cotton adoption, falling cotton 
prices, and reduced cotton acreage (López-
Hoffman et al., 2014). Effective economic models 
must integrate ecological processes, market 
dynamics, and management decisions. 
Economic surplus models (Zhang et al., 2018), 
benefit-transfer approaches (Wiederholt et al., 
2016), and expert-based models (Riggi et al., 
2024) have also been used. However, 
challenges in capturing these systems' 
complexity require further interdisciplinary 
collaboration for more comprehensive valuation 
methods (Naranjo et al., 2015). 
 

5.3 Policy Support for Botanical Pest 
Control 

 

Policy frameworks are crucial for advancing 
innovative botanical pest control technologies 
within Integrated Pest Management (IPM) and 
sustainable agriculture. Supportive pest 
management policies are vital for promoting IPM 
and botanical alternatives (Munyua, 2006). 
Government backing is essential for the broad 
adoption of alternative pest management. Policy 
frameworks can tackle issues like formulation 
complexities, limited chemical data, and 
regulatory barriers hindering plant-based 
pesticides in grain storage (Jyoti, 2024). Despite 
benefits such as low toxicity to non-target 
organisms and IPM compatibility, botanical pest 
control technologies face social and 
psychological adoption barriers (Jyoti, 2024; 
Munyua, 2006). Therefore, policies should foster 
technological innovation and address social 
adoption aspects. Effective policies should 
emphasize regulatory support, training, and 
collaborative research to overcome botanical 
pest control challenges (Jyoti, 2024; Quiroz et 
al., 2019). Integrating these solutions into 
storage practices and agriculture can enhance 
food security and reduce the risks of synthetic 
pesticides. Furthermore, policies should 
encourage participatory approaches and 

knowledge exchange among stakeholders to 
facilitate changes in pest management practices 
(Munyua, 2006; Zhou et al., 2024). 
 

6. ADVANCED MOLECULAR DECODING 
OF PLANT DEFENCE MECHANISMS 

 

6.1 Secondary Metabolites in Chemical 
Defence 

 

Plant secondary metabolites are vital for 
chemical defense against biotic and abiotic 
stresses (Dhruv et al., 2022). These compounds 
defend against pathogens and herbivory and 
play a key role in plant ecological interactions 
(Gani et al., 2020). They enable plants to swiftly 
detect and respond to herbivore attacks under 
changing conditions (Divekar et al., 2022). 
Secondary metabolites directly poison insect 
pests, trigger anti-xenosis, and indirectly protect 
plants by recruiting herbivorous enemies 
(Divekar et al. 2022). Recent evidence indicates 
that some secondary metabolites also regulate 
immune responses, such as callose deposition 
and programmed cell death, beyond serving as 
antibiotics (Piasecka et al., 2015). Plant 
secondary metabolites act via multiple pathways, 
including direct toxicity, anti-xenosis, indirect 
protection, and immune regulation. Their diverse 
nature and ability to accumulate in various 
tissues at different growth stages make them 
essential for plant defense (Dhruv et al., 2022; 
Divekar et al., 2022). 
 

6.2 Molecular Interactions in Pest 
Disruption 

 

Selective pest control exploits neuropeptide-
receptor interactions, endocrine disruption, and 
charge-based molecular recognition to disrupt 
essential insect processes (Nachman et al., 
1993; Tebourbi et al., 2011; Gelmi et al., 2012). 
Peptide mimetics designed as agonists or 
antagonists can disrupt pest survival, while 
pesticides acting as endocrine disruptors affect 
hormone secretion or receptor binding, impacting 
reproduction and development (Nachman et al., 
1993; Tebourbi et al., 2011). Pesticides can also 
disrupt biochemical processes or generate 
reactive oxygen species, causing toxicity 
(Tebourbi et al., 2011). Thiabendazole (TBZ) 
exemplifies selective targeting by disrupting a 
specific human β-tubulin isotype (TUBB8), 
affecting endothelial cell microtubules and 
angiogenesis (Garge et al., 2020). 
Understanding molecular mechanisms of 
pesticide action is crucial for developing selective 
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and sustainable pest control strategies while 
minimizing unintended effects on non-target 
organisms (Garge et al., 2020). 
 

6.3 Ethnobotanical Insights into Pest 
Management 

 
Ethnobotanical knowledge can uncover hidden 
pest management strategies, as several studies 
have shown. Indigenous communities have 
preserved effective, eco-friendly, and cost-
efficient pest control practices using local plant 
materials and animal by-products (Meena et al., 
2021). Modern agricultural extension officers 
often overlook sustainable alternatives to 
chemical pesticides. In the Thulamela 
municipality, a study found that 71% of extension 
officers relied on chemical methods, with only 
3.2% being aware of biological control using 
natural enemies (Thovhogi et al., 2022). Farmers 
in the state of Andhra Pradesh, India have 
traditionally used leaves of Vitex negundo, locally 
known as "nirgundi," to protect stored grains from 
pests. Research has confirmed the efficacy of V. 
negundo extracts against several storage pests, 
highlighting the scientific basis of this traditional 
practice (Hebbalkar et al., 1992). This gap 
between traditional and modern practices 
highlights the potential of ethnobotanical 
knowledge to achieve the Sustainable 
Development Goals (SDGs) for sustainable 
agriculture and environmental conservation 
(Kumar et al., 2021; Kumar, 2021). To harness 
this potential, better documentation, validation, 
and integration of traditional knowledge with 
modern science are needed (Reyes-García et 
al., 2007). 
 

7. CONCLUSION 
  

Botanical pest management represents a 
comprehensive approach to sustainable 
agriculture that integrates the biochemical, 
molecular, and ecological mechanisms of plant 
defense. Exploiting plant-derived compounds 
with specific molecular interactions and targeted 
modes of action provides an environmentally 
sensitive alternative to synthetic pesticides. This 
approach leverages complex plant defense 
mechanisms, biotechnological innovations, and 
precise intervention strategies to disrupt pest 
physiological processes while minimizing 
ecological disruption. These methods 
demonstrate significant potential for developing 
more sustainable and ecologically balanced pest 
management systems that align with global 
agricultural sustainability objectives. 
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