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Predicting the evolution of permeability accurately during stimulation at the reservoir

scale and at the resolution of individual fractures is essential to characterize the fluid

transport and the reactive/heat-transfer characteristics of reservoirs where stress

exerts significant control. Here, we develop a hybridmachine learning (ML)model to

visualize in situ permeability evolution for an intermediate-scale (~10m) hydraulic

stimulation experiment. Thismodel includes anMLmodel that was trained using the

well history of flow rate and wellhead pressure and MEQ data from the first three

stimulation episodes to predict average permeability from the statistical features of

the MEQs alone for later episodes. Moreover, a physics-inspiredmodel is integrated

to estimate in situ fracture permeability spatially. This method relates fracture

permeability to fracture dilation and scales dilation to the equivalent MEQ

magnitude, according to laboratory observations. The seismic data are then

applied to define incremental changes in permeability in both space and time.

Our results confirm the excellent agreement between the ground truth andmodel-

predicted permeability evolution. The resulting permeability map defines and

quantifies flow paths in the reservoir with the averaged permeability comparing

favorably with the ground truth of permeability.
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Introduction

Enhanced geothermal systems (EGSs) could provide plentiful and continuous

carbon-free energy for the increasing global demand of electric power (Williams et al.,

2008; Kneafsey et al., 2018; Kneafsey et al., 2019) and have significant potential to shift

the current dependence on fossil fuels (Fridleifsson, 2018). The amount of geothermal

energy that can be economically extracted depends on reservoir temperature,

utilizable reservoir volume (Bauer et al., 2019), and rates of fluid mass and heat

transfer, which are in turn controlled by petrophysical parameters (Laubach et al.,

2009; Bauer et al., 2017; Kushnir et al., 2018). The ability to create a reservoir and to

predict permeability evolution before, during, and after stimulation at the reservoir
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scale and at the resolution of individual fractures is essential to

accurately estimate fluid mass transfer and heat recovery from

the reservoir.

The difficulty in predicting permeability evolution using

purely numerical physics-based geomechanical models is that

the description of the state of the system to its consequent

behavior is often very complicated. This comes from the

nonlinear nature of the variables that define the system

underlying the time-evolution. For example, the permeability

of new fractures is highly stress dependent. The evolution of the

fracture permeability can be evaluated from fracture compaction/

dilation or propagation—provided the geometric evolution and

connectivity is known/predictable. However, the complexity of

this nonlinear response and reinforcing feedback linking changes

in the reservoir pressure to changes in permeability renders such

problems intrinsically ill-constrained and ill-defined. This

situation is compounded by the reality that initial conditions

are also poorly constrained and perhaps unknowable.

Additionally, these models rely on the integration of multiple

geologic, geochemical, and geophysical input data that are

usually collected during and after well stimulation. This innate

complexity makes it almost impossible to predict permeability

evolution during well stimulation, which implies that traditional

forecasting methods are typically not able to cope with the

ensuing complexity.

In this article, we develop a novel hybrid ML method to

map 3D permeability evolution using concurrent

microearthquake (MEQ) data and fluid injection history

during well stimulation. Our strategy combines the ML

model to predict the average permeability evolution in the

reservoir and a physical model for estimating spatially

distributed fracture permeability over time. We use

experimental data from the EGS-Collab project, which aims

to explore the modes of permeability evolution and heat

recovery. The intermediate-scale (~10 m) hydraulic

stimulation experiments were conducted at depths and

stresses representative of real reservoirs (Kneafsey et al.,

2019; Kneafsey et al., 2018). Step-rate injection is applied

to create fractures by hydraulic stimulation, with wellhead

pressures and flow rates concurrently measured. In addition,

these experiments are exceptionally well-constrained by the

continuous monitoring of active and passive seismics

(CASSM) throughout the experiments and data cataloged

(Fu et al., 2018; Schoenball et al., 2020). We analyze the

data of five stimulation episodes, where the location,

timing, and relative magnitudes of MEQs are defined

concurrently with time histories of injection (Fu et al.,

2019; Schoenball et al., 2020). The analysis is completed in

three steps (Figure 1). In step 1, we evaluate injectivity directly

from the ratio of wellhead pressure and flow-rate histories.

These are defined over the five episodes of the experiment,

punctuated by halts and shut-ins. Then, we convert injectivity

to a mean permeability by incorporating an approximated

flow geometry. This defines the “ground truth”—a

deterministic measure of both injectivity and average

permeability of the system. In step 2, we use the injectivity

and MEQ data from the stimulation of the first three episodes

(#1–#3) to build a supervised ML model based on a gradient

boosting algorithm (XGBoost, Cheng et al., 2019) to predict

injectivity from MEQs alone over the final two episodes (#4).

We then convert this history of injectivity into a mean

permeability—using the same moving geometric conversion

used in step 1. The predicted injectivity from the ML model is

then compared with the ground truth value of injectivity to

evaluate the accuracy of the ML model. Furthermore, this

predicted injectivity is converted into an average permeability

and compared with the deterministic permeability from step

1 for validation. In step 3, we use the magnitudes and locations

of MEQs to independently constrain the spatial (fracture-by-

fracture) permeability distribution using an empirical physical

model. The detailed derivation of the empirical relation can be

found in the Methods section. This spatially distributed

fracture permeability is then combined to yield an average

permeability to compare with the ground truth for validation.

Results

Deterministic permeability: Injection history data of pressure

(red) and flow rate (blue) for the five stimulation episodes are

shown in Figure 2A1–E1. Orange symbols represent the shortest

distance of the seismic events from the injection well, with the

symbol size scaling with the magnitude of individual MEQs for

each episode correspondingly. Figure 2A2–E2 show the time

histories of deterministic injectivity (light green line) and

cumulative number of seismic events (orange line) for each

episode. The deterministic injectivity is evaluated directly

from the ratio of wellhead pressure and flow-rate histories. To

convert the injectivity to average reservoir permeability, we

assume that 1) fluid flows across the formation quasi-radially

from the injection wellbore to an external migrating boundary

and 2) the MEQs are partitioned between those resulting from

changes in effective stress (80% assumed) and those beyond this

region resulting from changes in total stress (20% assumed).

Thus, the activated reservoir is confined to a volume that only

contains fractures (MEQs) reactivated by fluid percolating from

the injection (80% of the events), but this stimulated volume

grows with time as the external cylindrical contour migrates as

more distant MEQs occur. Thus, this migrating cylindrical

envelope is estimated from the cumulative frequency of

MEQs-with-radius and capped where cumulative frequency

is 0.8.

Figure 3A shows the histogram of the number ofMEQs to the

shortest distance of seismic events from the well for episode #4 at

time T, and the cumulative frequency of MEQs (orange line) is

calculated. The flow radius is then estimated where the
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cumulative frequency is 0.8 (gray line). The evolution of the flow

radius can be estimated by time following the same strategy, and

flow radius versus time for episode #4 and episode #5 are shown

in Figures 3B,C.What is clear from this is that the effective radius

of flow migrates monotonically outward during the two latter

experiments. The radius is zero before any seismic events occur

and grows upon their occurrence. This zone grows to 7.5 m at the

end of episode #4 and ~12 m for episode #5, suggesting a

continuous flow pathway between injection and production

wells.

We estimate the average permeability from the injectivity by

presuming the radial flow from the 10 m-long borehole with

interior and exterior pressure boundary conditions fixed to those

of the injection and production well, respectively, as,

k � Iµ ln (r/r)2πh, where k is the average permeability (m2);

µ is the viscosity of water (8.9×10–4 Pa·s); and r is the estimated

radius of the cylindrical volume (m), which is derived from the

migration of MEQs during the experiment. r0 is the interior/

injection wellbore radius (0.048 m). This represents an

approximation of the geometric correction for flow that is

FIGURE 1
Logic chart and steps to create mean permeabilities and a permeability map.

FIGURE 2
Seismic and injection information of the collab stimulation experiment (A1–A5) shows the injection history of the five stimulation episodes (blue
line shows wellhead pressure and red line shows the flow rate) and the distance from MEQs to the injection well (orange symbols). Symbol sizes
represent the MEQ magnitude. (B1–B5) shows the ground truth of injectivity history (light green lines) and the cumulative number of MEQs that
occurred (orange line) of the five stimulation episodes, respectively. The dashed line shows the periods from the first MEQ which happened to
well shut-in during episodes #4 (b4) and #5 (b5).
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likely heterogeneous with azimuth but is considered uniform.

The deterministic permeability for episodes #4 and #5 is

represented by light green lines in Figures 3D,E. Figure 3F

shows the well pressure (black line) and flow rate (blue line)

histories for the injection well (top) and the production well

(bottom) in episode #4. The flow rate was observed to fluctuate

for a minute at the production well, highlighted by blue shaded

area, which indicates that fluid has propagated to the production

well. The permeability during this short period can be estimated

using Darcy’s law, k � dqµL
Adp , where dq (1.68 LPM) is the difference

in the average flow rate between the two wells, L is the distance

from the injection to the production well (10 m), A is the cross-

sectional area (π·(102 )2 m2), and dp (25.14 Mpa) is the average

pressure difference between the two wells. The resultant

permeability is 1.2 × 10−16 m2, which is close to our

estimation of 2 × 10−16 m2 at the same time (T) based on the

cylindrical flow geometry. This further confirms that the

assumption of ~80% of seismic events directly induced by

effective stress (direct contact with elevated fluid pressures) is

reasonable.

ML predicted the average permeability in the reservoir. An

ML model is built using the data from the first three episodes

#1–#3 with ~450 MEQs and ~2.5 h of well stimulation (training

data). This consists of nine statistic features of the seismic data

calculated over a small, moving time window, labeled by

injectivity over the same time window. One time window

corresponds to a minute. First, 80% of the training dataset

will be used to train the model, and the rest of the 20% will

be used to quantify whether the model is overfitting.

Hyperparameters are set by fivefold cross-validation, and the

best model is chosen using the root mean squared error (RMSE)

as an evaluation metric. The step-by-step description of data

analysis and machine learning methods is documented in the

Methods section. It must be noted that the training data can be

the dataset of any single episode of the three or few episodes that

occurred before the predicted episode. For example, to estimate

injectivity in episode #4 (testing data), the training dataset can

comprise episode #3 only or all three episodes from #1 to #3. We

run 6 tests in total to find out the optimum train dataset and

input features to predict injectivity for episode #4 and #5. A total

of nine statistic features of MEQs produce 511 combination

possibilities. Each combination of features will be applied to

build an ML model for every single test, and the best model for

each test is quantified when R2 is closest to 1, using the

difference between the deterministic and predicted features in

each episode. These models are selected for each of the best with

FIGURE 3
Deterministic permeability calculation and validation. (A) Illustration figure shows the flow radius estimated by the cumulative frequency of
MEQs of 0.8 at the time T. Figure (B) and (C) show the evolution of the flow radius for episodes #4 and #5. (D) and (E) show the ground truth (light
green line) and ML-predicted (orange line) permeabilities for episodes #4 and #5. (F) Top: pressure (black line) and injection flow rate (blue line)
histories for episode #4. Bottom: pressure (black line) and flow rate (blue line) histories of the production well for episode #4. Insert figure
shows the zoom in of the light blue shade area, where permeability is calculated and further used to validate the ground truth of permeability
calculated by injectivity based on the cylindrical flow geometry.
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TABLE 1 Input features and hyperparameter performance.

Test
no

Training
dataset

Test
dataset

R2 RMSE Input
feature

Max_depth Min
child
weight

eta Subsample Colsample
by tree

1 #1–#3 #4 0.00 7.58E-
04

4 and 9 9 1 0.2 0.9 0.9

2 #3 #4 0.63 5.60E-
02

3 and 8 9 1 0.5 0.9 0.9

3 #1–#3 #5 0.00 4.89E-
04

4 and 9 9 1 0.2 0.9 0.9

4 #3 #5 0.69 1.71E-
02

3, 5, 7, and 8 2 8 0.4 0.9 0.9

5 #1–#4 #5 0.43 2.01E-
02

5, 6, and 8 5 8 0.3 0.9 0.9

6 #3–#4 #5 0.13 6.00E-
03

3, 5, 7, and 8 9 1 0.1 0.9 0.9

7 #4 #5 0.35 1.87E-
02

1, 2, 3, 4, and 7 2 7 0.4 0.9 0.9

Input features no: 1) R, 2) Dmean, 3) Dmax, 4) Dmin, 5) Mw_mean, 6) Mw_max, 7) Mw_min, 8) N, 9) Ntot1.

FIGURE 4
Predicted injectivity of episode #4. (A) Average injectivity by the time moving window (blue line) and predicted injectivity (red line) from the ML
model in episode #4. (B) The input features are used to construct the machine learning model. (C) Average permeability vs predicted permeability in
episode #4. (D) The importance of input features.
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its input features, R2, RMSE, and hyperparameters, as shown in

Table 1.

We show the most accurate predicted injectivity from the

ML model (red line) in episode #4 (Figure 4A) and episode #5

(Figure 5A), and compare it with the deterministic injectivities

(blue line). ML is applied to predict injectivity during the period

starting from the first MEQ that occurred to the well shut in

(the time between two dashed lines in Figure 2B4,B5). The

scatter plots in Figure 4B and Figure 5B show the ground truth

of average injectivity versus machine learning estimations of

injectivity using only the statistics of MEQs. A perfect model

would follow the gray dashed line. RMSE and R2 are calculated

for each project, with RMSE = 0.056 and R2 = 0.63 for episode

#4 and RMSE = 0.017 and R2 = 0.69 for episode #5. This,

together with the general concurrence in the time histories,

confirms the excellent agreement between the ground truth and

ML predicted injectivities. Importantly, this injectivity is

predicted purely based on the training of the ML algorithm

against injectivity-vs-MEQ histories over episode #3 to predict

injectivity over episodes #4 and #5 from the MEQs alone. These

predictions are derived purely from the statistical features of the

seismic events from a history of injectivity that the model has

never seen. We emphasize that there is no past nor future

information considered when making such a prediction. Each

prediction uses only the statistical features of seismic events

within a single moving window. Thus, we can predict the

corresponding history of injectivity in episode #4 from the

seismic catalog alone.

As an ML algorithm makes explicit decisions based on the

values of the features, a trained XGBoost model can

automatically calculate the importance of the predictive

features and therefore enables us to gain physical

FIGURE 5
Predicted injectivity of episode #4. (A) Average injectivity by time moving window (blue line) and predicted injectivity (red line) from the ML
model in episode #5. (B) The input features used to construct the machine learning model. (C) Average permeability vs predicted permeability in
episode #5. (D) The importance of input features.
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understanding of the problem. An F-score is used to evaluate the

importance of each input feature, which implies the relative

contribution of the corresponding feature to the model,

calculated by taking each feature’s contribution for each tree

in the model. A higher value of this metric, when compared to

another feature, implies it is more important for generating a

prediction. The evolution of the predictive key features for

episodes #4 and #5 are shown in Figure 4C and Figure 5C,

and their feature importance is presented using the F-score by

plots shown in Figure 4D and Figure 5D, respectively. For the

estimates of injectivities, the top two features correspond to the

maximum distance from MEQs to the injection well, and the

number of the MEQs that occurred within a time window.

We then convert the predicted injectivity to a mean permeability

by incorporating an approximated flow geometry and an estimated

magnitude of the migrating flow radius as in step 1. The evolution of

the predicted average permeability for episodes #4 and #5 is shown as

an orange line in Figures 2D,E for easy comparison. We observe that

both deterministic and predicted average permeability gradually

increase to a maximum until well shut in. The well agreement of

deterministic and predicted average permeability curves confirms the

accuracy of theMLmodel with RMSE= 2.35 ×10–17 and R2 = 0.72 for

episode #4 and RMSE = 2.18 ×10–17 and R2 = 0.81 for episode #5.

3D in situ permeability map and permeability structure:

Physics-inspired models of MEQs are applied to define the

spatial evolution of permeability on individual fractures/MEQs

over episodes #4 and #5. The matrix is effectively impermeable

(set to 10–19 m2; Neupane et al., 2019) with a local fracture

permeability created by MEQs determined from Equation 10 and

represented by the data-point cloud. The dark blue symbols in

Figure 6A,B represent the fracture permeability created by MEQs

from initiation to termination of the respective injection episodes

#4 and #5. The predicted fracture permeability is shown spatially and

indexed by color intensity. Symbol size reflects the magnitude of the

related seismic events. Fracture permeability created by all MEQs

during the entire stimulation episode are shown in Figure 6C (from

#1–#4) and Figure 6D (#1–#5). The outer contour of the cylindrical

volume follows the extent of water migration, with the color

indicating average reservoir permeability predicted by the ML

model. The stimulated zone of the enhanced fracture

permeability migrates radially outward from the injection well

(red line) preferentially toward the production wells (green line).

This suggest that new and reactivated fractures are propagated from

the injection well toward the production well that is azimuthally

focused toward the production well. A plan view of the 3D

permeability map predicted for all episodes (Figure 7) shows the

form of fracture propagation from the injection to the production

well and identifies the possible fluid path. Symbols colored from light

to dark green show the spatial permeability that was created from

episodes #1 to #5 with a symbol size indicating theMEQmagnitude.

The color transition from light to dark is consistent with the fluid

path created from the injection to the production well (Figure 7A)

and propagates from a shallower to deeper position in the reservoir

(Figure 7B). The 3D in situ permeability map shown in Figure 5C,D

integrates both average reservoir permeability and fracture

permeability distribution. Importantly, the map defines both the

spatial distribution of permeability and the magnitude and

distribution of the heat transfer area—a key factor in defining

the efficiency of heat exchange within a prospective geothermal

reservoir. The largest permeability enhancement is represented by

the denser zone of fractures. The insights gained through the

application of these methods can be incorporated into conceptual

models and utilized for planning exploration and development

strategies in operating geothermal fields.

We average the evolving spatial distribution of permeability

recovered from Equation 10 (step 3) to compare it against the

average permeability recovered from the previous steps. We mesh a

20×20×10 m cube that contains a 10-m radius cylinder and

discretize the volume using a 0.1 m grid. Each calculated fracture

permeability value is then assigned into the mesh block based on its

location. If several fractures are in the same mesh block, then the

largest (most dominant) of the fracture permeabilities is selected.

Mesh blocks without fractures are assigned as a matrix permeability

of 10−19 m2. We arithmetically average and volume-weight the

permeability across all mesh blocks. The cross comparison of the

average permeability by different methods at the end of episodes

#4 and #5 are shown in Table 2. Permeability between two wells for

episode #4 is calculated by Darcy’s law as shown in Figure 3E-insert.

No data on the flow rate and the pressure at the production well for

episode #5 have been collected, thus permeability estimated using

this method is missing. It is observed that the average permeability

estimated by the physics-inspired model is slightly higher than that

of the other methods. This may be because the model estimates the

arithmetical mean of both the fracture and matrix permeability

without considering if fractures created by MEQs are connected to

the main fluid path, and thus there is the possibility of

overestimation in the average permeability. The deterministic

permeabilities for episodes #4 and #5 recovered from the

injectivity ground truth (Step 1) are in the magnitude of average

permeabilities estimated from the fracture permeability maps (Step

3)—indicating that fracture permeabilities may be directly

constrained from MEQs and based on the moment’s magnitude.

Discussion

Our hybrid ML methods applied to this EGS-Collab

stimulation experiment can define an inherent correlation

between MEQs and well injection history. Based on ML

methods, injectivity is predicted from the statistical features of

the seismic events, corresponding to a history of injectivity that the

model has never seen. This is accomplished by training the ML

model in early episodes of observation and predicting over the final

two episodes. The average permeability of the fractured reservoir is

then calculated from injectivity, using a geometric correction of the

steady state. This causality between injectivity/permeability and
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MEQs is then used to develop a physics-inspired model linking

permeability evolution to MEQ magnitude. This relies on the

parallel plate analog linking permeability to dilation and is then

supplemented by laboratory observations scaling dilation to the

equivalent MEQ magnitude. These data are then scaled to link

individual MEQs of known magnitude and location to define

FIGURE 6
Spatial in situ permeability map. (A) and (B) show spatial permeability distribution for episodes #4 and #5 only. (C) and (D) show local fracture
permeability cumulated fromepisodes #1–#4 and#1–#5. The outer contour of the cylindrical volume follows the extent of watermigration with the
color indicating average reservoir permeability predicted from theMLmodel at the end of episodes #4 and #5. Red and blue lines represent injection
and production well, respectively.

FIGURE 7
Top view (A) and side view (B) of the 3D permeability map show the fracture propagation and potential fluid paths.

Frontiers in Earth Science frontiersin.org08

Li et al. 10.3389/feart.2022.1020294

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1020294


incremental changes in permeability in both space and in time.

This pointwise distribution of permeability is then used to define a

map of permeability structure and then averaged to recover the

mean permeability evolution. This prediction closely matches the

measured ground truth of the ensemble permeability recovered

from this unusually well-constrained injection experiment. The

promising approach to quantify the evolution of permeability as a

function of observable MEQs proves a valuable tool in the

characterization of reservoirs with the potential to visualize the

evolution of potential fluid flow paths, the generation of reactive/

heat-transfer surface area, and the capability of further constraint

using superimposed signals, say of tracer response. Challenges for

the application of this method to a larger scale include dealing with

much noisier data, applying longer injection histories, and data on

operation under various conditions need to be collected as a

database to build ML models and to evaluate and improve

accuracy.

Domain knowledge plays an essential role in choosing

statistic features in ML models. We chose nine statistic

features in the model to eliminate the dependence of

injectivity on 1) number of MEQs, 2) magnitude of MEQs,

and 3) the distance of MEQs from the injection well in the

regression problem. The results illustrate that the distance of

MEQs from the injection well is the dominant feature in

predicting injectivity, followed by the number of MEQs and

then the magnitude of MEQs. It should also be mentioned that

the success of the supervised ML approach is heavily dependent

on the training dataset used. Our results show that using the data

of episode #3 only to predict episodes #4 or #5 is much more

accurate than using all three episodes. This is because flow rates

after episode #3 were more than ten times higher than those used

in prior stimulations (episodes #1–2) with a similar injection

pressure, which led to tenfold increased injectivity. If we choose

episodes #1–3 instead of episode #3 only, this will include ~78%

(110 out of 140 min) of injectivity data and ~33% (150 out of

450 seismic events) of MEQs data irrelevant for higher

injectivities like the later episodes. This undoubtedly decreases

the accuracy in prediction. Therefore, choosing the dataset with

similar characteristics delivers better prediction than using the

bigger but irrelevant dataset.

Conclusion

We show that hybrid ML methods applied to this EGS-

Collab stimulation experiment are capable of defining an

inherent correlation between MEQs and well-injection

history—specifically, the injectivity, defined as the ratio of

the instantaneous flow rate and the wellhead pressure. This is

accomplished by training the ML model in early episodes of

observation (episodes #1–#3) and predicting over the final two

episodes (#4). Thus, injectivity is predicted from the statistical

features of the seismic events from a history of injectivity that

the model has never seen. The average permeability of the

fractured reservoir is then calculated from injectivity, using a

geometric correction of the steady state—which is then

assumed as the ground truth. This causality between

injectivity/permeability and MEQs is then used to develop

a physics-based model linking permeability evolution to the

MEQ magnitude. This relies on the parallel plate analog

linking permeability to dilation and then supplemented by

laboratory observations scaling dilation to the equivalent

MEQ magnitude. These data are then scaled to link

individual MEQs of known magnitude and location to

define incremental changes in permeability in both space

and time. This pointwise distribution of permeability is

then used to define a map of permeability structure and

then averaged to recover the mean permeability evolution.

FIGURE 8
Log–log plot of the fracture permeability versus the seismic
moment magnitude. Data from Li et al. (2021).

TABLE 2 Cross validation of permeability by different methods.

Episode no Permeability between two
wells

Deterministic permeability
(step 1)

ML model
(step 2)

Physics-inspired model
(step 3)

1 1.20E-16 2.03E-16 2.28E-16 8.03E-16

2 - 2.21E-16 2.55E-16 9.06E-16
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This prediction closely matches the measured ground truth of

the ensemble permeability recovered from this unusually well-

constrained injection experiment. The promising approach to

quantify the evolution of permeability as a function of

observable MEQs proves a valuable tool in the

characterization of reservoirs with the potential to visualize

the evolution of potential fluid-flow paths, the generation of

reactive/heat-transfer surface area, and the capability of

further constraint using superimposed signals, say of tracer

response. Challenges for the application of this method to a

larger scale include dealing with much noisier data, applying

longer injection histories, and data on operation under

various conditions need to be collected as a database to

build ML models and to evaluate and improve accuracy.

Methods

Data analysis and machine learning
methods

1) Data arrangement: In this project, well injection data are

continuously recorded every second, and a seismic catalogue

is recorded for each seismic event, which is not continuous in

time-like well data. We start by creating files of the well

injection history and seismic catalogue with a common time

base. We then scan both well data and seismic data using the

same moving time windows, and compute statistic features of

seismic data and average injectivity for each of these windows.

We define nine features (the statistic features of seismic data)

for the ML model including maximum seismic magnitude

(Mwmax), minimum seismic magnitude (Mwmin), average

seismic magnitude (Mwmean) within each window,

maximum value (Dmax), minimum value (Dmin), and

average value (Dmean) of distance from seismic events to

the injection well; estimated flow radius (R); the number of

seismic events within each window (N); and the cumulative

number of seismic events from the beginning to the current

window (Ntotal). Thus, each line of the database contains the

variables and the corresponding average injectivity during the

same time. The time series of variables is then labeled with the

injectivity correspondingly. The size of the time moving

window is picked for a minute, and each time window

moves forward for a second. We build variables and the

corresponding labels, and then add the resulting list of labeled

features to the database at each time increment. Finally, each

line of the dataset i is a list {xi
1, xi

2, xi
3 . . . xi

n, yi}, with xi
n the n

th feature of the i-th time window of the seismic data, n is the

total number of features, and yi is the average injectivity

during the same time moving window.

2) Train–validate–test split: We aim to use the ML model to

predict injectivity in episodes #4 and #5. The training dataset

can be the dataset of one single episode or the combination of

a few episodes that occurred before the predicted episode. For

example, to estimate injectivity in episode #4 (testing data),

the training dataset can be episode #3 only or episodes #1 to

#3. The details of training data and testing data are given in

Table 1. As the database has time series features of the seismic

data and the corresponding average injectivity, the

train–validate split must be of two continuous datasets in

time, not a random split. Here, we use the first 80% of the

training dataset to construct the ML model and the rest 20%

of the training dataset for validating the model.

3) Choose the features: The dataset is now composed of nine

features describing the seismic data versus the time

moving window. Our goal is to predict the injectivity

based on the given features. The features can be any

combinations of these nine features, which results in

511 possibilities.

4) Training and tuning the ML model: We build trail models

using both the train and test datasets with default

hyperparameters and evaluate the model performance by

the root mean square error (RMSE). Then

hyperparameters are tuned on the training dataset to

minimize the RMSE using cross-validation. We tune

hyperparameters in the model, and all the combinations of

hyperparameters with specific values in a range are tested to

guarantee the optimal solution (max depth [1,10], min child

weight [1,10], eta [0.005,0.5], subsample [0,1], and colsample

by tree [0,1]. Five-fold cross-validation is applied for each

combination of hyperparameters, where the training dataset

is split into 5 folds and iteratively keeps one of the folds for

test purposes and returns an RMSE score. The optimum

hyperparameters are chosen with the minimum RMSE. Then,

the model is checked by the validation dataset to make sure

this model is not overfitting. The final model is then created

using the training and validation datasets with updated

hyperparameters.

5) Make prediction: We can now make predictions using the

best model (final model). The combination of features will be

selected and then input into the best model to predict

injectivity. The predicted data will be compared with the

ground truth of injection to assess the performance of the

model.

6) Feature importance: We can look for the best features

identified by our model to try to understand how the

model reached its estimations. Here, we apply the feature

importance type as “gain,” which implies the relative

contribution of the corresponding feature to the model

calculated by taking each feature’s contribution for each

tree in the model. A higher value of this metric when

compared to another feature implies that it is more

important for generating a prediction.

Linking seismic magnitude with the fracture permeability

using an empirical equation.
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Here, we develop a new method to link MEQs and a fracture

permeability change during hydraulic stimulation of a fractured

reservoir. First, a simple configuration of hydro-shear failure is

assumed to be generated by microearthquakes (MEQs) during

stimulation, with a shear displacement of u (m) uniformly

applied to a square fracture plane of fracture length L (m).

The fracture area A (m2) is then simply defined as follows

A � L2. (1)

It has been demonstrated that the fracture length can be

estimated by an aperture using an exponent relationship as

follows (Ishibashi et al., 2016):

b � αLβ, (2)

where b is the fracture aperture (m), and α and β are the

coefficients that link the fracture aperture and length.

Permeability kf (m2) can be estimated from the fracture

aperture using the cubic law as follows:

kf � b2

12
. (3)

Based on the concept of the seismic moment M0 (Scholz,

2019),

M0 � AGu, (4)
where G is the shear modulus of the reservoir rock, usually of the

order of 30 GPa (McGarr, 2014).

Seismic moment can be converted to anMEQmagnitudeMw

using the following equation:

logM0 � 1.5Mw + 9.1, (5)

(Hanks and Kanamori, 1979).

The seismic moment related to fracture area can be expressed

as follows:

logM0 � 1.5log (A) + 6.09, (6)

(Leonard, 2010).

If we combine Equations (1–3) and (5–6), we can successfully

link the fracture permeability with the seismic magnitude:

kf � α2

12
10β(0.5Mw+1). (7)

Assuming α1 � α2

12, taking the logs of both sides of Equation 7

yields

log(kf ) � β(0.5Mw + 1) + log (α1). (8)

To determine the coefficients α1 and β for the reservoir

injection here (EGS-Collab project), we used experimental data

that concurrently measured the aperture and shear displacement

during slip on laboratory faults as the pore pressure was

incremented due to fluid injection (Figure 1A of Li et al.,

2021). These are the same reservoir rocks as in the field

experiment. The seismic moment is then calculated from

measured reactivation displacement (Equation 4), and

permeability is evaluated from the measured aperture

(Equation 3)—both independently. Substitution of multiple

correlated values of permeability kf and moment Mw into

Equation 8 then yields the coefficients α1 and β. The results

for change in fracture permeability kf as a function of seismic

moment Mw are shown in Figure 7, with regression defining the

fitting parameters as

log(kf ) � 0.8972Mw − 7.57, (9)

and therefore, from Eq. 8 ,we obtain α1 � 4.6 × 10−10 and β �
1.7584.

MEQs are then linked to the fracture permeability change

during the hydraulic stimulation as follows:

k � 4.6 × 10−10 × 100.8972Mw+1.7584. (10)
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