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Abstract 
 

Aims: Investigation of building and validation of metamodels which of linear regression, simple kriging, 
ordinary kriging and radial basis function for an electronic circuit problem are the main aim of this study. 
Study Design: An electronic circuit problem was considered to compare the performances of the 
metamodels. Latin hypercube design was used for experimental design of five input variables of the 
considered problem.  
Methodology: A training data set consisting of 45 experiments and a validation data set consisting of 
500 experiments were obtained using Latin hypercube design. Input variables were used by coded to 
calculate the spatial distances between observation points more consistently. Then using training data set 
linear regression, simple kriging, ordinary kriging and radial basis function metamodels were built. And, 
performance measures were calculated for the validation data set. 
Results: It has been shown that simple kriging which are applied to outputs the differences from the mean, 
and ordinary kriging metamodels, produce superior solutions compared to the linear regression and radial basis 
function metamodels for the electronic circuit problem considered in this study. Prediction superiority of SK 
and OK than RBF on five-dimensional problem is another important result of the study. 
Conclusion: Kriging metamodels are considered to be strong alternatives to the other metamodels for the 
problems that are considered in this study and have a similar nature. Since the superiority of metamodel 
methods to each other may vary from problem to problem, it is another important issue to compare their 
performance by considering more than one method in problem solving stage. 
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1 Introduction  
 
Researchers use the simulation model instead of the real system since the experiments cannot be performed 
on the real system due to cost or other constraints [1]. These models also can be quite complex, and simpler 
models of these models are built [2]. Kleijnen [3] defined these models as the model of the model or 
metamodel. A metamodel is a function that uses some simulation parameters as inputs and predicts some 
characteristics of the simulation output [4]. Generally, response surface methods using linear and quadratic 
regression models were used as metamodels [2,5,6]. Artificial neural network (ANN) [7], radial basis 
function (RBF) [8] and kriging [9] are other methods frequently used metamodels in the literature.  
 
In this study, the model-building and validation stages of linear regression (LR), simple kriging (SK), 
ordinary kriging (OK) and RBF metamodels are explained and shown how to apply them using on the 
electronic circuit problem and how to choose the appropriate kriging metamodel. SK and OK metamodels 
used in this study are the original form in geo-statistics, and extended from two-dimensional case to five-
dimensional case. SK metamodel has been applied to both output variable data and the differences from the 
mean. Gaussian and multi-quadratic functions were used as RBF metamodels.  According to the results of 
the study, it is seen that SK that applied to the differences from the mean and OK metamodels make better 
predictions by a small margin than the LR and RBF metamodels. Additionally, Superiority of SK and OK 
than RBF is shown on five-dimensional problem for linear prediction. It is evaluated that kriging 
metamodels are strong predictors for problems of similar structure. Since the superiority of metamodel 
methods to each other can vary from problem to problem, it is another important issue to compare their 
success by taking into account more than one method in problem solutions.  
 
Remaining parts of the article as follows. In the section 2, the technical structure of metamodel methods is 
summarized. Section 3 discusses experiment design and metamodel validation methods. In the section 4, 
metamodels are developed on an electronic circuit problem and the performance criteria are calculated. In 
section 5, conclusion is presented. 
 

2 Metamodel Methods 
 
The metamodel is a general method, especially when input/output relationships are unknown, and it specifies 
a mathematical approach that models the behavior of another model [4]. The aim is to determine the 
metamodel form that best suits the input/output relationship.  
 
In the literature, linear and quadratic regression models were often used as metamodels. Alternatively, RBF, 
ANN and kriging models are also used as metamodels [2,10].  LR, SK, OK and RBF metamodels are 
discussed in this study. 
 
The purpose of all metamodels is to find the best prediction of Z(��) denoted Z�(��) for a new point ��	Є	D.   
Z(�) is the process (deterministic or random), �	Є	D	 and � = (x�,… ,x�)

′ the point vector, observations	� =
(z(��),… ,z(��))

′ at observation points  ��= (x��,… ,x��)
′ ∀	i= 0,… .,n	. 

 

2.1 Regression metamodels 
 
Regression models originally developed for the analysis and modeling of the results of physical experiments 
[11]. Then they were used effectively to build descriptive models or metamodels for applications in many 
areas. Regression metamodels are developed to build the best of response surfaces and are the process of 
selecting first or second degree polynomial models fitted to the system response [2]. In this study, the LR 
metamodel was selected because the output of the problem is linear. 
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2.1.1 Linear regression  
 
LR model with k input variables is as given by Eq. (1) below [3,10,12]. 

 

Z(�) = β
�
+ ∑ β

�
x�

�
��� 	                                                               (1) 

 
Model parameters, �, are estimated with the least square method as in Eq. (2) [13]. 
 

�� = (X′X)��X′�                                                                             (2) 
 

Where �  is the design matrix of input variables at experiment points, � is shows the output variable value 
vector at the training points.  The LR estimate for the new �� point is obtained from the product of the value 
vectors as given in Eq. (3). 
 

Z�(��) = ��	��                                                                           (3) 
 

2.2 Kriging metamodels 
 
Kriging method has been developed for modeling and interpolation in geo-statistics [14]. In kriging method, 
the prediction value is obtained as the linear combination of the experimental data and the recalculated 
weights using the appropriate variogram or correlogram model for each prediction point. Sacks et al. [9] 
applied kriging for the first time as a metamodel to deterministic simulation outputs. Van Beers and Kleijnen 
[15] used kriging metamodel for random simulation outputs. Then Biles et al. [1] applied kriging metamodel 
to constrained simulation model outputs. 
 
Since kriging is based on statistical relationships between observed points, it is not only a technique for 
creating a prediction surface, but also provides some measure of the precision and accuracy of the 
predictions. Among all linear estimation models, they are unbiased estimators with the smallest mean square 
error. Kriging is more suitable for data obtained from large experimental areas and they are general models 
[6]. There are many types of kriging used in the literature [9,14,15,16]. In this study, SK and OK metamodel 
were chosen considering the output structure of the problem. 
 
2.2.1 Variogram and correlogram 
 
Variogram and correlogram analysis are very important in the development of kriging metamodel since they 
are used in the calculation of kriging weights [17]. Variogram estimation between two observations, �(��) 
and �(��+ ℎ)  for random process Z(�)	is obtained as given in Eq. (4) [18].  
 

γ�(h) =
�

�� (�)
∑ (Z(��) − Z(��+ h))�
� (�)
���                                                                 (4)     

  

Where, h is distance operator between observations, � (ℎ) is the number of observation pairs of �(��) and 
�(��+ ℎ) [13]. Covariogram estimation between two observations, �(��) and �(��+ ℎ)  is found as given 
in Eq. (5). The relation between variogram and covariogram is also given in Eq. (6). 
 

c�(h) =
�

� (�)
∑ (Z(��) − μ)	(Z(��+ h) − μ)
� (�)
���                                                  (5) 

 

γ�(h) = c�(0) − c�(h)                                                             (6) 
 

In the calculation of kriging weights, correlogram is also used instead of a variogram. Correlogram 
estimation between two observations, �(��) and �(��+ ℎ)  is found as given in Eq. (7). 
 

r�(h) =
c�(h)

c�(0)�                                                                                         (7) 
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Where, r�(h) is the correlogram estimator, and c�(0)  is the variance of the process. Generally, correlogram is 
used instead of variogram or covariogram to calculate kriging weights especially in deterministic simulation.  
A theoretical correlogram model is used to calculate the kriging weights for each new point. The theoretical 
correlogram model should conform to the experimental correlogram data. The mostly used theoretical 
correlation models in the literature are given below Eq. (8), Eq. (9) and Eq. (10) [9,19,6]. 
 

Gaussian Model: r(h) = exp	(− �h θ� �
�

                                                             (8) 

 

Exponential Model: 	r(h) = exp	(− h
θ� )                                                                           (9) 

 
Linear Model:  r(h) = max 	(1 − θh,0)                                                          (10)  

 
2.2.2 Simple kriging 
 
SK refers to the stationary states where the mean is known and constant, and variogram and covariogram 
functions are known. SK is used in modeling of spatial statistics [14]. It is the most widely used kriging 
metamodel method for deterministic simulation outputs after detrended [9]. Model assumption of Z(�) is 
given in Eq. (11). 

 
 Z(�) = μ + ε(�)                                                                                                 (11) 
 
E[ε(�)]= 0. 

 
Two different prediction model for SK are given in equations (12) and (13).  
 

Z�(��) = ∑ λ�
�
� Z(��)                                                                       (12) 

 

Z�(��) = μ + ∑ λ�
�
� (Z(��) − μ)                                                                           (13) 

 
Prediction weights are obtained by Eq. (14). 
 

� = R���                                                                                       (14) 
 

Where, 
 

R = �

1
r(��,��)

⋮
r(��,��)

							r(��,��)

1
⋮

r(��,��)

								

…
…
⋮
…

			r(��,��)

			r(��,��)
⋮
1

�, 

 
�= (r(��,��),r(��,��),...,r(��,��))

′ and 
 
� = (λ�,	λ�,λ�,… .,λ�)

′. 
 

SK prediction for a new �� point is obtained from multiplying the vectors as given in (15).  
  

Z�(��) = �′	�                                                                                  (15) 
 
2.2.3 Ordinary kriging 
 
OK refers to situations where the mean of the process is constant and unknown and the variogram function is 
known. OK is mostly used in modeling of spatial statistics [14]. It was used by Van Beers and Kleijnen [15] 
to model the random simulation outputs. Balaban [20] examined its validity on some test problems. 
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The OK predictor for the point �� is obtained as follows given in Eq. (16).  
 

  Z�(��) = ∑ λ�
�
� Z(��)                                                                       (16) 

 
∑ λ�
�
� = 1                                                                                     (17) 

 
The weights are obtained as in Eq. (18).  
 

�� = R�
����                                                                                       (18) 

  
Where, 

 

R� = �
R �
�′ 0

�, 

 
�� = (r(��,��),r(��,��),...,r(��,��),1)

′, 
 
�� = (λ�,	λ�,λ�,… .,λ�,m )

′ 
 
� = (1,… .,1)′. 
 

The OK prediction for a new point �� is obtained from the multiplying of the vectors as given in Eq. (19). 
 

Z�(��) = �′	�                                                                                     (19) 
 

2.3 Radial based functions 
 
RBF was developed by Hardy [8] for interpolation of scattered multivariate data. This method uses linear 
combinations of a symmetric radial function based on Euclidean distance or a similar metric to create a 
metamodel. RBF equations are defined as shown in Eq. (20) [12,21]. 
 

Z(�) = 	∑ w �∅�(‖�,x�‖)
�
���                                                                                    (20) 

 
Where, n is the number of sampling points, ��is the weight determined by the least square method and 
∅�(‖�,x�‖) is the base function defined for the observation point i. There is a wide variety of symmetric RBF 
in the literature [22]. In this study, multi-quadratic and Gaussian functions were used as RBF in metamodel 
creation and verification stages. These basis functions are given in Eq. (21) and Eq. (22), respectively. 
Where, h is the distance value, and c is the scaling parameter equal to 1. 
 

∅(h) = √h� + c�                                                                                 (21) 
 

∅(h) = e���
�
                                                                                        (22) 

 

3 Experimental Design and Validation of Metamodels 
 
Experimental design is one of important stages of metamodeling studies both establishing and validation. It 
determines which input variable combinations will be run for simulation model. For kriging, spade filling 
methods such as the Latin hypercube design (LHD) are often used. Since experimental data are expensive in 
simulation studies (especially in random simulation), it is also very important to work with a reasonable 
number of experiments [23,24].  
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3.1 Latin hypercube design  
 
In order to establish a metamodel with the kriging method in accordance with the simulation results, an 
experimental design method that can provide homogeneous distribution on the response surface from gap 
filling methods such as LHD should be done in factor intervals. LHD was developed by Mc Kay et al. [25] 
for the computer experiments design. The level of value each factor will take is included in the design once. 
All factors have the same number of levels. Experiments are designed as many as the number of levels. In 
this design, the permutation of the levels is determined randomly. Kleijnen [6] states that LHD is the most 
suitable design for kriging. The data obtained by LHD are also suitable for establishing a quadratic 
regression metamodel since they contain many levels of the input variable [24]. 
 

3.2 Validation of metamodels 
 
Before using metamodels for processes requiring precise computation instead of the model, its validity must 
be demonstrated with performance criteria. This stage is a necessary step in choosing which meta-model to 
use instead of the model. 
 
The validity of a metamodel can be evaluated in two ways. First, performance criteria are calculated for the 
training points used while building the model. The second is done by calculating the performance criteria 
that show the prediction accuracy for the new data set that are not used while building the model [26]. 
Simpson [27] suggested the use of an independent data set determined randomly for the validation of the 
model since it gives zero error estimation for all experimental points used in the kriging model. In his study, 
the second approach is preferred. The most commonly used three performance evaluation criteria are given 
in Eq. (23), Eq. (24) and Eq. (25). Where, Z(��) is output value of the experiment at point ��, Z�(��) is the 
prediction value at point �� and Z� is average of outputs. 
Mean Square Errors (MSE ): 
 

MSE =
�

�
∑ (Z(��)
�
��� − Z�(��))

�                                                                 (23) 

 
Root MSE  (RMSE ): 
 

RMSE = √MSE                                                                                      (24) 
 

R� measure: 
 

R� = 1 −
∑ (�(��)� ��(��)
�
��� )�

∑ (�(��)
�
��� � ��)�

		                                                                                     (25) 

 
It is expected that MSE  and RMSE  should be minimum among all metamodels and R� should be near to 1 for 
performance comparison. In the literature to reduce the number of parameters for the regression models 
R�adjusted are recommended. Because such as kriging and RBF metamodels have different structure than 
regression, the use of  R�adjusted is meaningless.  
 

4. Example Application: An Electronic Circuit Problem  
 
The regulated power supply optimization problem is considered as a test problem for the comparison of 
metamodels performance in this study [28]. The 5v operating voltage is commonly used by computer digital 
circuits. Its accuracy is 5±1%. According to the design requirements, the series linear regulator circuit is 
used. The value of output voltage is computed from Eq. (26). It is expected that output voltage is 5±0.05v 
and output current 1 A.  
 

V = �1 +
��

��
��

��

�����
�V� − �

�����

�� �
�V��                                            (26)  
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Where V�  is regulated value of voltage regulator tube and equal to 6.02 v, V��  is base and emitter voltage of 
compound triode and equal to 0.7 v, A is magnification of operational amplifier, ��,��,��,�� are value of 
resistances. Table 1 presents a range of input variables values. 
 

Table 1. Ranges of input variables 
 

Input variables Ranges of variables 
R1 30~130 Ω 
R2 680~1500 Ω 
R3 680~1500 Ω 
R4 2700~3900 Ω 
A 2000~10000 

 
Input variables were used by coded to calculate the spatial distances between observation points more 
consistently. The coding was obtained by dividing the lower and upper limit values for each variable (Table 
1) by the upper value. Thus, all input variables values, � = (x�,x�,x�,x�,x�)

′, are obtained between [0,100]. 
 
There is no common idea for the optimal number of experiments for kriging in the literature. However, some 
applications are as follows. Simpson [27] used 25 experiments for a 3-dimensional problem.  Martin and 
Simpson [26] used 40 experiments for a five-dimensional problem and Sacs et al. [9] used 32 experiments 
for a six-dimensional problem as training data set. In order to obtain the data used while building the model, 
a training data set consisting of 45 experiments was obtained using LHD. Since kriging models are the best 
unbiased linear estimators, in order to test the validity of the models, a validation data set consisting of 500 
experiments independent of the data we used when building the model was obtained by LHD as discussed in 
3.1.  Training data set is given in Table 2. The column d1 to d5 shows design levels of the input variables.   
 
LR prediction model as given shown is found suitable for the training data set. Parameter estimation was 
obtained with the least square estimator. As a result of the variance analysis given in Table 3, the 
contribution of input variable �� to the model was found statistically insignificant. 
 
The LR model is given in Eq. (27). 
  

Z(�) = 5.616 + 0.005x� − 0.006x� − 0.051x� + 	0.041x�                           (27) 
 

For the kriging metamodels, the Gaussian correlogram model was chosen as the most suitable model and the 

model parameter was estimated as θ� = 84.4. My own C++ source code is driven for SK, OK and RBF 
metamodels. I have used statistical software for LR metamodel. 
 
The MSE , RMSE  and R� performance criteria for all metamodels were calculated using the validation data 
set and are given in Table 4. SK (a) and SK (b) in the table are the SK metamodels given by Eq. (12) and 
Eq. (13), respectively. RBF (c) and RBF (d) show multi-quadratic and Gaussian RBF metamodels given by 
Eq. (21) and Eq. (22), respectively. 
 

Table 2. Experimental design and results for training data set 
 

No d1 d2 d3 d4 d5 x1 x2 x3 x4 x5 Z 
1 16 15 44 34 7 49.301 62.727 98.758 92.308 30.909 4.3555 
2 44 44 17 31 21 98.252 98.758 65.212 90.21 56.364 5.796 
3 5 24 30 11 5 30.07 73.909 81.364 76.224 27.273 4.2581 
4 8 20 19 41 42 35.315 68.939 67.697 97.203 94.546 5.7587 
5 39 22 4 16 38 89.511 71.424 49.061 79.72 87.273 6.5227 
6 18 12 1 26 4 52.797 59 45.333 86.713 25.455 7.0298 
7 15 45 26 43 33 47.552 100 76.394 98.601 78.182 5.3569 
8 45 42 6 19 17 100 96.273 51.546 81.818 49.091 6.344 
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No d1 d2 d3 d4 d5 x1 x2 x3 x4 x5 Z 
9 10 33 16 32 20 38.811 85.091 63.97 90.909 54.546 5.6997 
10 19 8 2 5 41 54.546 54.03 46.576 72.028 92.727 6.2304 
11 36 30 24 7 14 84.266 81.364 73.909 73.427 43.636 4.6258 
12 28 40 14 10 18 70.28 93.788 61.485 75.525 50.909 5.2728 
13 30 7 12 25 19 73.776 52.788 59 86.014 52.727 6.1471 
14 4 43 10 30 22 28.322 97.515 56.515 89.511 58.182 6.0398 
15 41 34 22 39 25 93.007 86.333 71.424 95.804 63.636 5.7092 
16 38 41 41 20 35 87.762 95.03 95.03 82.518 81.818 4.1598 
17 32 11 33 12 45 77.273 57.758 85.091 76.923 100 4.3982 
18 27 13 45 17 37 68.532 60.242 100 80.42 85.455 3.9779 
19 3 6 34 6 39 26.573 51.546 86.333 72.727 89.091 3.9618 
20 29 18 28 4 11 72.028 66.455 78.879 71.329 38.182 4.3307 
21 21 21 9 21 8 58.042 70.182 55.273 83.217 32.727 6.056 
22 22 29 3 28 32 59.79 80.121 47.818 88.112 76.364 6.8147 
23 7 36 27 13 40 33.566 88.818 77.636 77.622 90.909 4.4567 
24 26 26 38 3 3 66.783 76.394 91.303 70.629 23.636 3.7979 
25 17 32 29 42 1 51.049 83.849 80.121 97.902 20 5.2069 
26 23 25 35 44 13 61.539 75.152 87.576 99.301 41.818 5.0124 
27 14 2 40 2 24 45.804 46.576 93.788 69.93 61.818 3.7169 
28 34 4 39 23 16 80.769 49.061 92.546 84.615 47.273 4.5189 
29 42 17 15 27 10 94.755 65.212 62.727 87.413 36.364 5.9906 
30 35 1 31 1 36 82.518 45.333 82.606 69.231 83.636 4.2783 
31 9 14 7 45 34 37.063 61.485 52.788 100 80 6.8623 
32 40 10 11 35 26 91.259 56.515 57.758 93.007 65.455 6.6307 
33 11 39 32 18 28 40.559 92.546 83.849 81.119 69.091 4.3685 
34 37 27 21 36 31 86.014 77.636 70.182 93.706 74.546 5.7028 
35 25 3 8 9 6 65.035 47.818 54.03 74.825 29.091 5.9325 
36 13 37 23 22 44 44.056 90.061 72.667 83.916 98.182 4.9708 
37 33 38 43 29 15 79.021 91.303 97.515 88.811 45.455 4.2945 
38 1 31 36 38 23 23.077 82.606 88.818 95.105 60 4.6507 
39 6 16 18 24 29 31.818 63.97 66.455 85.315 70.909 5.3453 
40 43 5 42 37 30 96.504 50.303 96.273 94.406 72.727 4.8347 
41 12 35 5 33 12 42.308 87.576 50.303 91.608 40 6.6548 
42 2 28 25 15 9 24.825 78.879 75.152 79.021 34.546 4.6015 
43 24 9 13 14 2 63.287 55.273 60.242 78.322 21.818 5.6156 
44 20 19 20 40 43 56.294 67.697 68.939 96.504 96.364 5.7814 
45 31 23 37 8 27 75.525 72.667 90.061 74.126 67.273 4.0241 

 
Table 3. ANOVA results for linear regression 

 
Input variables Unstandardized coefficients Standardized coefficients t Sig. 

B Std. error Beta 
Constant 5.616 .206  27.223 .000 
x1 .005 .001 .121 6.442 .000 
x2 -.006 .001 -.101 -5.166 .000 
x3 -.051 .001 -.876 -46.558 .000 
x4 .041 .002 .396 20.213 .000 
x5 .000 .001 -.004 -.204 .839 

 
Considering the R� performance criterion, it is seen that all metamodels are suitable metamodels for this 
problem. Considering the MSE , it is seen that SK (b) and OK metamodels make better predictions 
respectively than other metamodels with a small difference. 
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Table 4. Prediction performance of the metamodels 
 

Model MSE RMSE R2 
LR 0.01508 0.12280 0.98 
SK (a) 0.01011 0.10055 0.99 
SK (b) 0.00778 0.08820 0.99 
OK 0.00792 0.08899 0.99 
RBF (c) 0.04246 0.20606 0.95 
RBF (d) 0.07600 0.27568 0.90 

 

5 Conclusion 
 
In this study, establishment and validation of SK, OK, LR and RBF metamodels for an electronic circuit 
problem is investigated. As the results of the study, according to MSE , RMSE  and R� criteria, SK (b) and OK 
metamodels, produced superior prediction respectively with a small difference compared to LR and RBF 
metamodels. 
 
Kriging metamodels are alternative models that can be used as metamodels instead of complex models, since 
they are general models and can determine the changes in local regions. Since the superiority of metamodel 
methods to each other may vary from problem to problem, another issue should be taken into consideration 
in problem solving by considering more than one method and comparing their performance. 
In future studies, the performance of metamodel methods will be tested on similar problems using 
optimization algorithms. 
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