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Abstract 

 
The aim of present paper is to investigate the bioconvection squeezing nanofluid flow between two 

parallel plates’ channels. One of the plates is stretched and the other is fixed. In this study water is 

considered as a base fluid because microorganisms can survive only in water. The significant influences 

of thermophoresis and Brownian motion have also been taken in nanofluid model. A highly nonlinear and 

coupled system of partial differential equations presenting the model of bioconvection flow between 

parallel plates is reduced to a nonlinear and coupled system (non-dimensional bioconvection flow model) 

of ordinary differential equations with the help of feasible non-dimensional variables. The acquired 

nonlinear system has been solved via homotopy analysis method (HAM). The convergence of the method 

has been shown numerically. Also, influence of various parameters has been discussed for the non-

dimensional velocity, temperature, concentration and density of the motile microorganisms both for 

suction and injection cases. The variation of the Skin friction, Nusselt number, Sherwood number and 
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their effects on the velocity, concentration, temperature and the density motile microorganism profiles are 

examined. Furthermore, for comprehension the physical presentation of the embedded parameters, such 

as unsteady squeezing parameter, Thermal radiation parameter, Peclet number, Thermophoresis 

parameter, Levis number, Prandtl number, Schmidt number and Brownian motion are plotted and 

discussed graphically. At the end, we make some concluding remarks in the light of this article. 

 

 

Keywords:  Thermal radiation; gyrotactic microorganisms; squeezing flow; nanofluid; parallel plates; and 

HAM. 

 

1 Introduction 

 
Nanofluids have attracted the interest of researchers due to their numerous potential applications in industrial 

processes, such as in power generation, chemical processes and heating or cooling processes and also in 

nanotechnology. Bio-convection is a phenomenon that occurs when microorganisms (which are denser than 

water) swim upward on average. Due to up swimming the microorganisms involved such as gyro tactic 

microorganisms like algae tend to concentrate in the upper portion of the fluid layer thus causing a top heavy 

density stratification that often becomes unstable. The study of nanofluid bio-convection describing the 

spontaneous pattern formation and density stratification induced by the simultaneous interaction of the 

denser self-propelled microorganisms, nanoparticles and buoyancy forces seems necessary. These 

microorganisms may include gravitaxis or oxytaxis organisms. The addition of gyrotactic microorganisms 

into the nanofluid increases its stability as a suspension. 

 

The squeezing nanofluid flow has many applications in different fields, particularly in chemical engineering 

and food industry. There are many examples regarding squeezing flow, but especially the important ones are 

compression, injection and polymer preparation. This field got considerable attention due to useful 

applications in the Biophysical and Physical field.  Stefan [1] has been explored squeezing flow using 

lubrication approximation. Verma [2] has been discussed squeezing flow of nanofluid between parallel 

plates. Magneto hydrodynamic squeezed flow of nanofluid over a sensor surface is investigated by Haq et al. 

[3] Features of unsteady squeezing flow of nanofluids between two parallel plates are investigated by Gupta 

and Ray [4]. Qayyum et al. [5] analyzed the time dependent squeezing flow of Jeffrey fluid between two 

parallel disks. Hayat et al. [6] analyzed mixed convection squeezing flow of an incompressible Newtonian 

fluid between two vertical plates. Hayat et al. [7] has been investigated magneto-hydrodynamic (MHD) in 

squeezing flow in Jeffery nanofluid for the parallel disc. Dib et al. [8] has examined squeezing nanofluids 

flow analytically. Nano-fluid is the composition of Nano-particles, which shows significant properties at a 

reticent concentration of Nano-particles. Nano-fluid is a term refers to liquid consisting sub microparticles.  

It has many applications, but the important feature is the development of thermal conductivity observed by 

Masuda et al. [9]. His study reveals that Nano-fluid has different thermal properties like thermal viscosity, 

thermal infeasibility, relocate of temperature, convection temperature and thermal conductivity as compared 

to oil and water base fluids [10-11]. 

 

Muhammad et al. [12] investigated the rotating flow of magneto hydrodynamic carbon nanotubes over a 

stretching sheet with the impact of non-linear thermal radiation and heat generation/absorption. Hamad [13] 

has been investigated the Nano-fluid analytical solution for convection flow in the presence of a magnetic 

field. Kaufi et al. [14] has been studied current of Nano-fluid. Sheikholeslami [15] has been investigated 

thermal radiation effect on MHD flow and relocate of temperature by two-phase mode. Khan et al. [16] 

studied the combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid 

flow over a stretching surface under the influence of variable heat and thermal radiation. 

 

Goodman [17] was the first one to explored viscous fluid in parallel plates. Sheikholeslami et al. [18-19] has 

been discussed the nanofluid flow of viscous fluids between parallel plates with rotating systems in three 

dimensions under the magneto hydrodynamics (MHD) effects. For the solution of the modelled problems 

they used numerical method and discussed the special effects of achieving parameters in detail. Attia et al. 
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[20] has been inspected viscous flow between parallel plates with magnetohydrodynamics. Mahmoodi and 

Kandelousi [21] have studied the hydro magnetic impact of Kerosene−alumina nanofluid flow in the 

occurrence of heat transfer analysis, differential transformation method is used in their work. Tauseef et al. 

[22] and Rokni et al. [23] have been examined the MHD and temperature effects on nanofluids flow in 

parallel plates with the rotating system. Hayat et al. [24] has been discussed thermal radiations effect in 

squeezing flows of Jeffery nanofluids. Ali et al. [25] has discussed the effect of radiations on un-steady free 

convection magnetohydrodynamics flows of the Brinkman kind fluids in a porous medium have Newtonian 

heat. Khan et al. [26] have been observed thermal radiation consequence on squeezing flow Casson fluid 

among parallel disks. Srinivasacharya [27] has been investigated both the effects in the vertical curly surface 

at existing of the porous medium.  

 

The idea of Gyrotactic microorganisms develops the stability of nanoparticles in the suspension [28]. Among 

numerous ways of improving, the stability of nanoparticles and heat transfer in fluid gyrotactic 

microorganisms study an important one. Bhatti et al. [29] has investigated Simultaneous effects of 

coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing 

gyrotactic microorganism. Shahid et al. [30] investigated magneto hydrodynamics nanofluid flow containing 

gyrotactic microorganisms propagating over a stretching surface by successive Taylor series linearization 

method.Abbas et al. [31] investigated Electro magneto hydrodynamic nanofluid flow  past a porous                  

Riga plate containing gyrotactic microorganism. Bhatti et al. [32] have been investigated A mathematical 

model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical 

reaction effects. Khan et al [33] studied magnetic and Navier slip effect in heat and mass transfer in 

gyrotactic micro-organism in vertical surface. Similarly, Khan with Makinde [34] have been studied 

boundary layer flow of magnetohydrodynamic (MHD) in Nano-fluid consisting gyrotactic organism in 

linearly stretching sheet.       

                                      

In the present field of science and engineering, most of the mathematical problems are so involved that the 

accurate solution is almost very difficult. So for the solution of such problems,  Analytical and Numerical 

methods are used to find the approximate solution. One of the most famous methods for solving such type 

problems is Homotopy Analysis Method (HAM).  Its main advantage is applying to the nonlinear 

differential equations without discretisation and linearization. In (1992) Liao [35-37] was the first one to 

examine this method for the solution of non-linear comlicated problem’s and showed that this method is 

quickly convergent to the approximate solution. The solution by this technique is perfect because it contains 

all the embeded parameters of a problem and we can easily explain its behaviour in detail. Due to its quick 

convergence, many researchers like Abbasbandy [38] and Rashidi [39] have used this technique to solve 

highly nonlinear and coupled equations. The basic theme of this paper is to discuss the unsteady 

bioconvection thermally conducting squeezing flows of a nanofluid between parallel plates in the occurrence 

of Gyrotactic Micro-organisms. To our knowledge, no studies have been made to analyze the simultaneous 

effects of heat generation/absorption on heat and mass transfer of Squeezing nanofluid between two parallel 

channels. The governing coupled nonlinear partial differential equations are reduced to a system of coupled 

ordinary differential equations using appropriate transformations, and then the resulting equations are solved 

analytically by the homotopy analysis method (HAM). A parametric study is conducted to investigate the 

influence of various physical parameters on the velocity, temperature, concentration and density of motile 

microorganism profile. 

 

2 Formulation 

 
The considered flow is thermally conducting incompressible viscous nanofluid with effects of thermal 

radiations, between two parallel and horizontal plates. The distance between upper and lower plates is 

represented by h . The Coordinate system is selected in such a method that lower plate is on the horizontal 

axis (x-axis) and the y-axis is perpendicular to the lower plate which is assumed to be fixed. The flow of the 

nanofluid and heat-transfer is assumed in the unsteady two-dimensional states which are laminar, 

incompressible and stable. Moreover, the upper plate is capable of moving away with velocity ( )
dh

v t
dt

= .  
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Uniform temperatures given to the lower plate is 1
Τ and at upper plate is represented by 2

Τ . Where upper 

plate has reflexive supporting conditions, and nano-particles are scattered uniformly at the lower plate shown 

in Fig. 1. Uniform microorganisms distribution on the lower plate represented by 1Ν  and upper plate denote 

by 2Ν . The geometry of the nanofluid flow model is shown in the Fig. 1.  

 

 
 

Fig. 1. Sketch of the Nanofluid flow model  

 

The governing equations of Continuity, Velocity, Temperature, Concentration and Density of the motile 

microorganism are articulated as follow, 

             
0,x yvu + =

                                                                                                                                        (1)  
 

( ) ( )t x y xx yynf xu uu vv p u vρ µ+ + = − + +
                                                                                                (2)    

         

( ) ( ) ,nf t x y y xx yyv uv vv p v vρ µ+ + = − + +
                                                                                      (3) 

 

( ) ( ) { } ( ) ( ){ } ( )
( )

22

0

1
,T

rdt x y xx yy B x x y y x y y

p f

D
T uT vT T T D C T C T T T q

c
α τ

ρ

  
+ + = + + + + +  

Τ   
−

⌢

                 (4)           
                         

0

,xx yy xx yyt x y B

DT
u v D C C T T

T
C C C    + + = + + +   

                                                                             (5) 
 

    
( )*

.t x y n yyz
u v D NN N N v+ + + =Ν

                                                                                                 (6) 
 

The equations. (1-6) represents the flow model for nanofluid. In above mentioned equations u  and v  

denotes velocity components, Ν be the density of the motile-microorganism, Τ  and C  shows the 

temperature at the plate and volumetric fraction of the nanoparticles,
( )

( )
p

f

c

c

ρ
τ

ρ
= , where ( ) pcρ  & ( ) fcρ  
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represents temperature capacity of  nanoparticles and fluids. Moreover, µ  denotes viscosity, BD  represents 

Brownian diffusion and 
T

D  denotes thermophoretic coefficient, in x  and y  direction respectively. Further

* ( )c
y

bw
v

C
C=

∆
. In Eq (4), rdq is the radiative heat fluctuation is expressed in term of Roseland 

approximation as: 

 

*

*

16
,

3
rd

y
Tq

σ
= −

Κ                                                                                                                                 (7) 

 

In equation (7) relation 
*

σ   represents “Stefan Boltzmann” constant and 
*

k  indicate “mean absorption” 

coefficient respectively. Supposing that the difference in heat inside the flow is such that 
4

Τ  can be 

expressed as a linear combinations of the heat, we enlarge 
4

Τ  as Taylor’s series about 0Τ  as under: 

 

    
( )4 4 3

0 0 04 ...,Τ = Τ + Τ Τ − Τ +
                                                                                                            (8)     

                                                                                  

After neglecting terms of higher order we obtained: 

 
4 4 3

0 03 4 ,Τ ≅ − Τ + Τ Τ
                                                                                                                          (9) 

 

By Putting Eq. (8) in Eq. (7) we get 

 

( )
3 *

0

*
,

16

3
rd yyy

q T
K

σΤ
= −

                                                                                                                   (10) 

 

Feasible auxiliary conditions for lower and upper plates are: 

 

0 1 1
 and  0,  0,   ,  T ,u C C Nν = = = = Τ = Ν

                                                                                 (11)         

                                                                                            

2 2

0

,  0,   ,  ( ) ( ) 0 and .T
B

Ddh C
u T D

dt y y
Nν

∂ ∂Τ
= = Τ = + =

∂ Τ ∂
= Ν

                                              (12) 

 

  Similarity Variables are: 

 
1 1 1

1
2 2 2

0 0

2 0 0 2 0

 

1 1 1 (1 )
( , ) ( ), ( ), ( ), ,

( ) , ( ) 1 ( ) .and

t t t v t
x y xf u f v f y

bv bx bv b

C

C

α α α α
η η η η

θ η φ η ϕ η

− − −
−

− − − −
′Ψ = = = − =

Τ − Τ Ν − Ν
= = − + =

Τ − Τ Ν − Ν

       
       
       

   
   
          (13) 

 

In above expression 0 0 0
,  and ,CΤ Ν  are reference temperature, reference concentration of nanoparticles and 

reference concentration of microorganism respectively.      
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Substituting Eq. (13) into the governing Eqs. (1) to (6), clearly equation (1) hold identically and Eqs. (2-5) 

gives us the following ordinary differential equations. 

 

   
- - - 3 0,

iv
f ff f f f fλη λ′′′ ′ ′′ ′′′ ′′+ =

                                                                                             (14)     

                                        

( ) ( )
24

1 Rd 0,
3

r f Nb Ntλη φ′′ ′ ′ ′ ′+ θ + Ρ − θ + θ + θ =
 
 
                                                            (15) 

( ) 0,
t

Le f

b

φ λη φ θ
Ν

′′ ′ ′′+ − + =

Ν

 
 
                                                                                           (16) 

 

( ) 0.Sc f Pe Peϕ λη ϕ ϕφ ϕ φ′′ ′ ′′ ′ ′+ − − − =
                                                                                  (17) 

 

The non-dimensional parameters are: 
 

 

( )

3

0 0

2 0 0

0

1 0 1 0 1 0

1

2 0 2 0 02

*
4 ( )

,   , , Pr , ,    
2 ( )3

( ) ( )( )
  ,         ,   ,  

( ) ( )

( ) ( )
,  , . ,  

( ) ( )
2( )

p b

f Bp f

p pT b

f n f

c c

n

T c D C v v
Rd Nb Le

b c Dc k

c cD D Cv
t Sc Nb

c D c

b W C CH
Pe

D C
vb

σ ρα
λ

ρ α αρ α

ρ ρ

ρ α ρ α

α
ω δθ δϕ δφ

= = = = =

Τ − Τ
Ν = = =

Τ

Τ − Τ Ν − Ν −
= = = = =

Τ − Τ Ν − Ν

 



,


                         (18)     

 

In equations (14-17) different parameters are used like λ  represent  unsteady squeezing parameter, The 

other dimensionless physical parameter which are used in the Flow Model are radiation ( Rd ) , Brownian 

motion ( )Nb , Peclet ( Pe ),  , thermophoresis parameter ( Nt ),  Levis number ( )Le , Prandtl number ( Pr ) 

and Schmidt number ( )Sc . Also ,  ,  φ ϕω δ δ  and θδ  all are constants. Furthermore, transmuted form of the 

feasible boundary conditions both for lower as well as for upper plates defined in equations (11) to (12) are 

as:   
 

(0) = 0, (0) = 0, (1) = 0, (1) ,

,

 f f f f w

b t

θ

ϕ φ

θ δ

ϕ δ

φ θ

θ φ δ ϕ

′ ′ (1) = , =

(1) = ,   ,

′(0)Ν + (0)Ν = 0

 

(0) = 1, (1) = (0) = 1

.

                                                                      (19)                  

                                

The “skin-friction”, “Nusselt-Number”, “Sherwood-Number” and the “Density-Number of the motile 

microorganism” are defined under as: 
 

   

( ) ( ) ( )2

0 0 0

.

0 0 0 0

, , , ,

,

q2
Nu =

K T - T

,  & 

w m n
f x x x

w B w n w

m B n n

y y y y

x xq xq
C Sh = n

U D C - C D n n

u

y
q q D q D

y y y

ω

ωω

τω

ρ

τ µ
φ ζ

= = = =

= Ν =
−

∂
=

∂

∂Τ ∂ ∂
= Κ = − = −

∂ ∂ ∂

                             (20)       
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In above expression   ,  and ,
w w w

nCΤ   are surface temperature, surface concentration of nanoparticles and 

surface concentration of microorganism respectively.             

   

By applying Eq. (13) dimensionless form, Nusselt Number, skin-Friction, Sherwood Number and Local-

Density of motile microorganism are as: 

 

 ( ) ( ) ( ) ( )
1 1 1

2 2 2
Re

0 Re 0 Re 0 Re 0
2

, ,  &  
x

f x x x x x x
C f Nu Sh Nnθ φ ξ

− − −

′′ ′ ′ ′= = − = − = −                (21) 

Where  Rex

xU

v

ω=  is a local Reynolds number and 
w

U  is the stretching velocity. 

 

3 Methodology 

 
The above mentioned coupled differential equation (14) - (17) with boundary conditions defined in equation 

(19), are tackled trough analytical technique called Homotopy Analysis Method” (HAM). Since the present 

mathematical model contains boundary value problem (BVP) so these equations are solved with the help of 

Homotopy Analysis Method” (HAM).All these working schemes are assimilated in the computational 

software Mathematica. 

 

4 Solution by HAM   

 
In order to solve Eqs. [14-17] along with boundary conditions (19), we using “HAM”. For the solution HAM 

scheme has benefits such as it is free from the large or small parameters. This technique gives a simple way 

to confirm the convergence of the solution. . Moreover, it delivers freedom for the right selection of 

auxiliary parameter & base function. In this scheme, the assisting parameters h  are used to control the 

convergence of the problem. Initial guesses are carefully chosen as: 

 

2 3

o 0 θ

o θ θ f

o φ

f (η)=3ωη -2ωη , θ (η)=1-η+δ η,

1
f (η)= (-Νt+Νtη+Νtδ -Νtδ η+Νbδ ),

Νb

φ (η)=1-η+δ η

                                                                                                   (22) 

 

Selected linear operators, are: 

 

4 2 2 2

f 4 2 2 2

f
L (f) ,  L ( )= ,  L ( )= ,  L ( )=

η η η η
.θ φ ϕ

θ φ ϕ
θ φ ϕ

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
                                                                            (23) 

 

The above-mentioned differential operator’s contents are shown below: 

 
2 3

f 1 2 3 4 5 6 7 8 9 10L (ε +ε η+ε η +ε η ) 0, (ε +ε η) 0, (ε +ε η) 0, (ε +ε η) 0.θ φ ϕ= = = =L L L
                                     (24) 

                                                                                                              

Here 
10

1
i

i

ε
=
∑ where 1, 2, 3...i = denotes arbitrary constants. 
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The resultant non-linear operators are given by: ,  ,  ,  and fN N N Nθ ϕ φ  

 

( )
4 2 2 3

f 4 2 2 3

2

2

f(η;ψ) f(η;ψ) f(η;ψ) f(η;ψ) f(η;ψ)
Ν f(η;ψ) f(η;ψ)

η η η

f(η;ψ)
3 ,

λ

λ

∂ ∂ ∂ ∂ ∂
= + − × − η

∂ ∂ ∂ ∂η ∂η

∂
−

∂η

                               (25)      

 

( ) ( )
2

θ 2

2

4 θ(η;ψ) θ(η;ψ)
 Ν θ(η;ψ),f(η;ψ), (η;ψ) 1+ Rd Pr f(η;ψ)-λη

3

θ(η;ψ) (η;ψ) (η;ψ)
+Νb Νt ,

φ
∂ ∂

= +
∂η ∂η

∂ ∂φ ∂θ
+

∂η ∂η ∂η

 
 
 

 
 
 

                                  (26) 

 

             

( ) ( )
2

2

2

2

(η;ψ) (η;ψ)
(η;ψ), f(η;ψ), (η;ψ) Le f(η;ψ)-λη

Νt θ(η;ψ)
,

Νb

φ
η

∂ φ ∂φ
Ν φ θ = +

∂ ∂η

∂
+

∂η

 
 
 

                                                (27) 

 

( )

( )

2 2

2 2

(η;ψ) (η;ψ) (η;ψ) (η;ψ)
(η;ψ),f(η;ψ), (η;ψ) Pe (η;ψ)

(η;ψ)
Sc f(η;ψ)-λη .

Peϕ

ϕ ϕ
ϕ ϕ

ϕ

∂ ∂ φ ∂φ ∂
Ν φ = − − +

∂η ∂η ∂η ∂η

∂

∂η

              (28)                               

4.1 Zeroth order deformation problem  

 

      
( ) ( )f 0 f f- =0(1-ψ)L f(η,ψ)-f (η) ψh Ν f(η,ψ) ,

                                                                                      (29)       
                                                                

    
( ) ( )θ 0 θ θ- =0(1-ψ)L θ(η,ψ)-θ (η) ψh Ν θ(η;ψ),f(η;ψ),f(η;ψ) ,

                                                               (30) 
 

( ) ( )0(1-ψ) (η,ψ) (η) ψ (η;ψ),f(η;ψ),θ(η;ψ) ,- 0hφ φ φφ − φ Ν φ =L
                                                  (31) 

 

( ) ( )0(1-ψ) (η;ψ) ( ) ψh (η;ψ), f(η;ψ), (η;ψ) .- 0ϕ ϕ ϕϕϕ − η Ν ϕ φ =L
                                             (32) 

 

The subjected boundary conditions are: 

 

1η=0
10

11 0 η=0

η=1 0

0

,

f(η;ψ) f(η;ψ)
 f(η;ψ) 0,  0,  f(η;ψ) ,  0,

(η;ψ) ,  (η;ψ) 1,  (η;ψ)  θ(η;ψ) 1,  

( ; )
θ(η;ψ) ,  Νb (η;ψ) Νt 0.

 w

φ ϕ

θ

δ δ

θ η
δ φ

η=
η=η=

η=η= η=

η=
η=

∂ ∂
= = = =

∂η ∂η

φ = ϕ = ϕ = =

∂
= + =

∂η

ψ

                                            (33) 
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Where [0,1]∈ψ  is the imbedding constraint, ,fℏ  ,θℏ ϕℏ and φℏ  were used to regulate convergence of the 

solution. Where 0 & 1= =ψ ψ we have: 

 

   
( ;1) ( ),  ( ;1) ( ),  ( ;1) ( ) and ( ;1) ( ).f f θ θ φ φ ϕ ϕη = η η = η η = η η = η

           
                    

Expanding the above term of ψwith the use of  Taylor’s series expansion we obtain: 

 

1 1o i o i

1 1

f(η,ψ) f (η) f (η), 0 = θ (η) θ (η) θ(η,ψ),

(η,ψ) ( ) ( ), 0 ( ) ( ) (η,ψ).

i i

i io o iiφ φ φ ϕ ϕ ϕ

∞ ∞
= =

∞ ∞
= =

−

−

= + +∑ ∑

= η + η = η + η∑ ∑
                                                      (34)              

                                                                  

Where 

 

i

1 f(η;ψ) 1 θ(η;ψ)
f (η) ,   ( )  ,

i! i !

1 (η;ψ) 1 (η;ψ)
( ) ,  ( ) .

i ! i !

i

i i

φ ϕ
φ ϕ

∂ ∂
= θ η =

∂η ∂η

∂ ∂
η = η =

∂η ∂η

ψ=o ψ=o

ψ=o ψ=o

                                                                       (35)           

 

4.2 
th

I  order deformation problem  

 

( ) ( )

( ) ( )

f θ

f i i-1 f i θ ii i-1 θ i

1 1

L f (η)- f (η) =h R (η), L θ (η)- θ (η) =h R (η),

L ( ) ( ) h ( ), L ( ) ( ) h ( ).

i i

i i i i i i i i

ϕ φ
ϕ ϕ φ φ

ξ ξ

ϕ ξ ϕ φ ξ φ− −η − η = ℜ η η − η = ℜ η
                                          (36)     

                                                                                                       

The resultant boundary conditions are: 

 

i i i i ii

i i

ii
f (0)=0, f (0)=0, f (1)=0, f (1)=0, θ (0)=0, θ (1)=0,

Νbf (0)+Νtθ (0)=0, (1) 0, (0) 0,  (1) 0.
i ii ii

′ ′

′ φ = ϕ = ϕ =
                                                                    (37) 

 

       
f iv i-1 i-1

k=0 k=0i i-1 i-1-k k i-1-k k i-1 i-1R (η)=f + f f - f f -ληf -3λf ,′′′ ′ ′′ ′′′ ′′∑ ∑
                                                                         (38) 

 

 

( )θ i-1 i-1 i-1
k=0 k=0 k=0i i-1 i-1-k k i-1 i-1-k k i-1-k k

4
R (η)= 1+ Rd θ +Pr f θ -ληθ +Νt θ θ +Νb f θ ,

3
′′ ′ ′ ′ ′ ′ ′∑ ∑ ∑

 
 
                       (39)           

                                                                                       

( )1
01 i-1 i-1-k 1

Νt
 ( )  θ Le f ,  

Νb

i
ki i k i

φ
η φ φ ληφ−

=− −+′′ ′′ ′ ′ℜ = + −∑
 
 
                                                                 (40)          

                                                        

  
( )1 1 1

0 0 01 1 1 11
( )   Pe Pe Sc   .

i i i
k k ki i i k i k k ik

fik k
ϕ

η ϕ ϕ φ ϕ φ ϕ λη ϕ− − −
= = =− − − − − −− −

′′ ′′ ′ ′ ′ ′ℜ = − − + −∑ ∑ ∑
                 (41)       
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Where 
 

1,   if ψ 1
ξ
i 0,   if ψ 1 

>
=

≤





                                                                                                                           (42) 

 

5 Convergence 

 
This segment of the article about HAM Convergence solution. When the series solutions are computed for 

the velocity, density of motile microorganism, temperature and concentration functions via using HAM, the 

assisting parameters are ,  ,  f ϕ θℏ ℏ ℏ , φℏ . These main parameters are responsible for the convergence of 

the solution. Table 1 displays numerical values of HAM solutions at different approximation using various 

values of different parameters. It is clear from the Table 1 that homotopy analysis technique is a quickly 

convergent technique. 

 

Table 1. Shows Convergence of the HAM up to 17
th

 Order Approximation where, 0.4,Ntλ = =  

0.2, Pr 0.7, 1, 0.6, 0.8 and 0.6. Rd Nb Le Sc Pe= = = = = =  

 

Approximation Order. (0)f ′′  (0)θ ′  (0)φ ′  (0)ϕ′  

1 3.98886 -0.0207921 0.953750 1.00025 

3 3.97650 -0.0387064 0.913169 1.07375 

5 3.97584 -0.0396453 0.910490 1.08915 

7 3.97583 -0.0396677 0.910383 1.09009 

9 3.97583 -0.0396681 0.910378 1.09013 

13 3.97583 -0.0396682 0.910379 1.09014 

15 3.97583 -0.0396682 0.910379 1.09014 

17 3.97583 -0.0396682 0.910379 1.09014 
 

6 Results and Discussion 

  
The current research has been carried out to study the Bioconvection model for squeezing flow between 

parallel plates containing gyrotactic microorganisms under the influence of thermal radiation and heat 
generation/absorption. The determination of this subsection is to examine the physical outcomes of 

dissimilar embedding on the Velocity ( )f η , Heat ( )θ η , Concentration ( )φ η  and Density of motile 

microorganism ( )ϕ η  distribution which are illustrated in (Figs. 2-15). Fig. 1 shows the geometry of the fluid 

model.  

 

6.1 Influence of squeezing fluid parameter 

 

Figs. 2, 3, 4 & 5 shows the impacts of squeezing fluid parameter λ  on ( ) ( )( ),  ,  f θ φη η η  & ( ).ϕ η  When 

plates are moving apart, then λ  takes the positive value in that corresponding case & when plates are 

coming closer the values are considered negative. Fig. 2 shows the influence of the flow when plates are 

moving away & this is opposite case of when plates are coming nearer. With the increase of λ  values fluid 

velocity also increasing.  Clearly velocity increases in the channel when fluid sucked inside. On the other 

hand when fluid injected out, then the plates come closer to one another. This manner brings about a drop in 

the fluid and consequently decreases the velocity. With the varying value of λ  parameter the influence of 
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( )f η  shown in Fig. 2. Figs. 3 and 4 show the influence of λ  parameter on the heat and concentration 

distributions respectively. Due to squeezing of the fluid the velocity increases and subsequently falls the 

temperature of the fluid because warm nanoparticles are escaping rapidly which results in lower temperature 

and the concentration of the fluid automatically reduces. Fig. 5 indicates variation in density of the motile 

microorganism for various values of λ . The density of microorganisms ( )ϕ η  illustrates variations. With 

changing λ  values, the ( )ϕ η  is a decreasing factor, when λ  parameter changes negatively and it shows 

increasing function for positive values of λ .   

 

6.2 Influence of Prandtl number parameter  

 

The impact of Pr  on the  ( )θ η & ( )φ η  are presented in Figs. 6 and 7. Clearly it is seen that temperature and 

concentration distributions vary inversely with Pr, that is temperature distribution drop with large numbers 

of Pr and rise for lesser values of Pr . Physically, the fluids having a small number of Pr  has larger thermal 

diffusivity and this effect is opposite for higher Prandtl number. Due to this fact large Pr  cause the thermal 

boundary layer to decreases. The effect is even more diverse for the small number of Pr since thermal 
boundary layer thickness is relatively large. On the other hand, increasing behaviour of concentration 

distribution is shown in Fig. 7 for increasing Pr values.  

 

6.3 Influence of thermophporetic parameter 

 

The Fig. 8 represents the influence of thermophoretic parameter Nt  on heat profile ( )θ η . It is investigated 

that ( )θ η  is increased by varying thermophoretic parameter Nt . According to Kinetic Molecular theory 

increasing the number of particles & increasing number of active particles both can cause to increase in the 

heat factor. Fig. 9 represents the change in the concentration profile ( )φ η  due to change in the parameter Nt . 

The profile ( )φ η  decreases in suction and injection cases. In injection case, the decrement in ( )φ η  is slow as 

compare to fluid suction case. 

 

6.4 Influence of Brownian motion parameter  
 

The Figs. 10 and 11 shows the effect of Nb  on ( )θ η & ( )φ η   fields. Heat profile ( )θ η  is increased by 

varying values of Nb  as shown in Fig. 10. Due to Kinetic molecular theory, the heat of the fluid               

increases due to the increase of Brownian motion. So the given result is in good agreement with the real 

situation. Similarly, Fig. 11 highlights the impact of the varying Nb parameter with respect to the 

concentration profile ( )φ η  on the domain, 0 1.≤ η ≤  An increasing impact of ( )φ η observed for both 

suction and injection in Fig. 11. A fast increment observed in ( )φ η  for fluid suction as compared to fluid 

injection. 
 

6.5 Influence of Peclet number parameter 
 

Fig. 12 represents the influence of Peclet number Pe  on ( )ϕ η . The values of density field of                          

motile-microorganism increases with increasing value of Pe . Fig. 13 shows the impacts of Sc on                  

density field of motile microorganism ( )ϕ η .The values of density field of the motile microorganisms 

decrease with increase in the values of Sc . Actually, Schmidt number is the ratio of kinematic viscosity to 

the mass flux. So when kinematic viscosity increases, then spontaneously the Sc  increases and ( )ϕ η  

decreases.  
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6.6 Influence of Lewis number parameter 

 

The Fig. 14 shows the impact of Le  on the concentration profile ( )φ η  where it is decreased when the 

number Le  increases. Actually, it is the ratio of thermal diffusivity to the mass diffusivity. So, when the 

thermal diffusivity decreases it automatically decreases Le  and also decreases concentration field.  

 

6.7 Influence of radiation parameter  

 

The Fig. 15 shows the influence of radiation parameter Rd  on the heat profile ( )θ η . It is observed that 

temperature profile ( )θ η  decreases with increasing values of Rd . It is a common observation that radiating 

a fluid or some other thing can cause to reduce the temperature of that particular.  

 

6.8 Numerical tables and discussions 

 
This segment of the article is dedicated to table discussions. Table 1 shows numerical values of HAM 

solutions at altered approximation using various values of dissimilar parameters. It is clear from the Table 1 

that homotopy analysis technique is a rapidly convergent technique. Physical quantities, such as skin-friction 

coefficient, heat flux, mass flux and Local-density number of motile microorganisms for engineering 

importance are calculated in the (Tables 2-5). Table 2 shows the influence of inserting parameters 

, Pr& Rdλ  on Skin friction .fC It is seen that rising value of λ  increases the skin friction, while the large 

values of Pr, Rd  reduce .fC  Table 3 scrutinises the impacts of embedding parameters , , PrNt Nb and Rd  

on heat flux .uΝ  It is seen that increasing values of ,Nt Nb and Pr reduce the heat flux ,uΝ  where Rd  

increase the heat flux when it increased. Table 4 inspects the influences of ,Nb Nt and R d on mass flux .Sh  

The increasing values of bΝ  reduce the mass flux where tΝ  increases the mass flux. The higher                   

value of Rd  reduce the mass flux. The influences of , ,   ,  &  Nb Rd Nt Pr Le on ( )0ϕ ′ are shown in          

Table 5. The increasing values of ,  Pr  &  Rd Nb  increase ( )0ϕ ′ , while the greater value of   &Le tΝ  

reduce ( )0ϕ ′ . 

 

GRAPHS: 

 
 

Fig. 2. Effect of λ  on ( )f η  when 0.9ω =  
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Fig. 3. Effect of λ  on ( )θ η  when 

0.9, 0.4, 0.3, 0.1, Pr 0.6, 0.4.Le Nb Nt Rdω = = = = = =  

 
Fig. 4. Effect of λ  on ( )φ η  when 

0.9, 0.4, 0.3, 0.1, Pr 0.6, 0.4.Le Nb Nt Rdω = = = = = =  

 
Fig. 5. Effect of λ  on ( )ϕ η  when 

0.8, 0.4, 0.3, 0.1Le Nb Nt Peω = = = = =  
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Fig. 6. Effect of Pr  on ( )θ η  when 

0.9, 0.3, 0.1, 0.6, 0.4Le Nb Nt Rdω λ= = = = = =  

 
 

Fig. 7. Effect of Pr  on ( )φ η  when 

0.9, 0.3, 0.1, 0.6, 0.4, Pr 0.2Le Nb Ntω λ= = = = = =  

 
Fig. 8. Effect of Nt  on ( )θ η  when 

0.9, 0.3, 2, 0.4, Pr 0.6Le Nb Rdω λ= = = = = =  
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Fig. 9. Effect of Nt  on ( )φ η  when 

0.8, 0.3, 0.1, 0.4, Pr 0.6Le Nbω λ= = = = =  

 
 

Fig. 10. Effect of Nb  on ( )θ η  when 

0.8, 0.3, 0.1, 0.4, Pr 0.6Le Nt Rdω λ= = = = = =  

 
 

Fig. 11. Effect of Nb  on ( )φ η  when 

0.8, 0.3, 0.1, 0.4, Pr 0.6Le Ntω λ= = = = =  
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Fig. 12. Effect of Pe  on ( )ϕ η  when 

0.9, 0.3, 0.6, 0.1, 0.4Le Nt Nbω λ= = = = =  

 
Fig. 13. Effect of Sc  on ( )ϕ η  when 

0.9, 0.3, 0.6, 0.1, 0.4, 0.5Le Nt Nb Peω λ= = = = = =  

 
Fig. 14. Effect of Le  on ( )φ η  when 

0.9, 0.4, 0.1, 0.3, 0.4, Pr 0.6Le Nt Nbω λ= = = = = =  
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Fig. 15. Effect of Le  on ( )θ η  when 

1, Pr 0.6, 0.1, 4Le Nt Nbω λ= = = = = =  
 

Table 2. Showing the numerical values of the Skin Friction Co-efficient for various parameters where 

0.7,  0.6, 1,  0.5. Sc Pe Nb Nt Le= = = = =  
 

λ  Pr  Rd  
( )

1

2Ref xC−  Present results 

1.5   0.9957 

2.0   1.2057 

2.5   1.4947 

 1.0  1.3142 

 1.5  1.1245 

 2.0  1.0032 

  0.5 2.9809 

  1.0 2.0011 
  1.5 1.3421 

  2.0 0.8765 
 

Table 3. Shows the numerical values of Local Nusselt number for unlike type parameters, where 

 0.5, Pr 0.7,λ = = 0.6,  0.7,  0.6,  0.1,  and 0.4.Le Sc Pe Mω= = = = =  
 

Nb  Nt  Pr  Rd  ( )0θ ′−
Present result 

0.5 0.5 1.0 0.5 1.6450 

1.0    1.0174 

1.5    1.9501 

2.0    1.5546 

    1.2013 

    1.0569 

 0.5   2.5923 

 1.0 1.0  1.7456 

 1.5 1.5  1.1196 
 2.0 2.0  1.0072 

 0.5 2.5  2.4609 

    2.1796 

    1.9406 
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Nb  Nt  Pr  Rd  ( )0θ ′−
Present result 

   0.5 1.2133 

   1.0 1.6202 

   1.5 2.0003 

   2.0 2.2913 

 

Table 4. Shows the numerical type values of the Local-Sherwood number for unlike parameters 

Where, λ=M=0.5, Le=0.6, Sc=0.7, Pr=Pe=0.6.  

 

Nb  Nt  Rd   ( )0φ′−
Present results 

0.2    0.8518 

0.6    0.7910 

1.0    0.6624 

0.2 0.5   0.8615 

 1.0   0.9020 

 1.5   0.9901 

    0.9323 

  1.5  1.8555 

  2.0  0.9919 

 

Table 5. Shows the Numerical values of Local-density number of motile microorganisms for numerous 

types of parameters when Pr 1,  0.4,   0.7,  and 0.1,M Scλ ω= = = = =  and 0.7.Pe =  

 

Rd  Nb  Nt  Pr  Le   ( )0ϕ′−
 

Present results 

1.0 0.5 0.5 1.0 2.0  0.9542 

1.5      1.2526 

2.0      1.6434 

1.0 0.5     0.9552 

 1.0     1.8599 

 1.5     2.1053 

 0.5 0.5    2.1053 

  1.5    1.7801 
  2.0    1.6864 

  0.5 1.0   2.2592 

   5.0   2.3331 

   10   2.9533 

   1.0 2.0  0.6321 

    6.0  0.6254 
    10  0.6203 

 

7 Closing Remarks 

 
In the present analysis we have disclosed the characteristics of Bioconvection Model for Squeezing Flow 
between Parallel Plates Containing Gyrotactic Microorganisms with Impact of Thermal Radiation and Heat 

Generation/Absorption. The key points are summarized as follows: 

 

• The larger values of Nb  rises the kinetic energy of the nanoparticles, which result an increase in the 

heat profile. 
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• Thermophoretic and Brownian motion parameters affect the concentration field reversely for both 

the suction and injection case. 

• When we increase thermal radiation parameter Rd , then it augments temperature of the boundary 

layer area in fluid layer. This increase leads to drop in the rate of cooling for nanofluid flow.  

• It is observed that ( )θ η  is increased by varying thermophoretic parameter Nt . 

• The convergence of the homotopy method along with the variation of different physical parameters 
has been observed numerically. 

• It is seen that increasing  and M λ  increase the skin friction, while the large values of Pr  and Rd  

reduce .fC   

• The increasing values of bΝ  reduce the mass flux where tΝ  increases the mass flux. The higher 

values of Rd  reduce the mass flux. 
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