
*Corresponding author: E-mail: yordzhev@swu.bg;

Asian Journal of Research in Computer Science

1(4): 1-8, 2018; Article no.AJRCOS.44314

The Bitwise Operations in Relation to the Concept
of Set

Krasimir Yordzhev1*

1
Faculty of Mathematics and Natural Sciences, South-West University, 66 Ivan Mihailov Str,

2700 Blagoevgrad, Bulgaria.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2018/v1i424756
Editor(s):

(1) Dr. Emanuel Guariglia, Assistant Professor, Department of Mathematics and Applications, University of Naples Federico II,
Italy.

(2) Prof. M. A. Jayaram, Director, Department of Master of Computer Applications, Siddaganga institute of Technology,
Tumakuru, India.

Reviewers:

(1) Ebiendele E. Peter, Oduduwa University, Nigeria.
(2) Nataša Milosavljević, State University of Novi Pazar, Serbia.

(3) Nirmal Tej Kumar, Sao Paulo State University, Brazil.
Complete Peer review History: http://prh.sdiarticle3.com/review-history/26448

Received 11 July 2018
Accepted 22 September 2018
Published 29 September 2018

ABSTRACT

We contemplate this article to help the teachers of programming in his aspiration for giving some
appropriate and interesting examples. The work will be especially useful for students-future
programmers, and for their lecturers.
Some of the strong sides of these programming languages C/C++ and Java are the possibilities of
low-level programming. Some of the means for this possibility are the introduced standard bitwise
operations, with the help of which, it is possible directly operate with every bit of an arbitrary
variable situated in the computer’s memory.
In the current study, we are going to describe some methodical aspects for work with the bitwise
operations and we will discuss the benefit of using bitwise operations in programming. The article
shows some advantages of using bitwise operations, realising various operations with sets.

Keywords: Bitwise operation; set; integer representation of sets, class; overloading of operators.

Method Article

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

2

1. INTRODUCTION

The use of bitwise operations is a powerful
means during programming with the languages
C/C++ and Java. In the current study, we are
going to describe some methodical aspects for
work with the bitwise operations (see also
[1,2,3,4]).

In the paper [4], we described an algorithm for
receiving a Latin square of arbitrary order using
operations with sets. Unfortunately, the
programming languages C/C++ and Java do not
support a standard type ''set'' [5], whereas for
example the Pascal language does. For this
reason, if there should be a need to use the
operations with sets in the realisation of some of
our algorithms, we have to look for additional
instruments to work with sets, such as, for
example, the associative containers set and
multiset, realised in Standard Template Library
(STL) [6,7,8,9]. We can also use the template
class set of the system of computer algebra
''Symbolic C++'', which programming code is
given in details in [10], or abstract class
IntSet, that presents the interface of set
realised through a dynamic array and ordered
binary tree, described in [11]. Of course,
another class set also can be built, and specific
methods of this class can be described, as a
means of training. This is a good exercise
for students when the cardinality of the
basic (universal) set is not very big. For
example, the standard Sudoku puzzle has basic
set the set of the integers from 1 to 9 plus the
empty set.

The purpose of this paper is to show
the advantages of bitwise operations to work
with sets in the C++ programming language.
This, of course, can be easily converted
in the Java programming language, which
has a similar syntax as in C++ [12,13].
Here we will create own class set by
describing specific methods for working with
sets.

2. BITWISE OPERATIONS - BASIC

DEFINITIONS, NOTATIONS AND
EXAMPLES

Bitwise operations can be applied for integer
data type only, i.e. they cannot be used for float
and double types.

We assume, as usual, that bits numbering in
variables starts from right to left, and that the
number of the very right one is 0.

Let x, y and z are integer variables or constants
of one type, for which bits are needed. Let x and
y are initialised (if they are variables) and let the
assignment z = x & y; (bitwise AND), or z = x | y;
(bitwise inclusive OR), or z = x ^ y; (bitwise
exclusive OR), or z = ~x; (bitwise NOT) be made.
For each � = 0,1,2, … , � − 1, the new contents of
the �-th bit in z will be as it is presented in the
Table 1.

In case that k is a nonnegative integer, then
the statement z = x<<k (bitwise shift left) will
fill the (� + �)-th bit of z the value of the � bit of
x, where � = 0,1, … , � − � − 1 , and the very
right � bits of x will be filled by zeroes. This
operation is equivalent to a multiplication of x
by 2�.

The statement z=x>>k (bitwise shift right) works
the similar way. However, we must be careful if
we use the programming language C or C++. In
various programming environments this
operation has different interpretations –
somewhere � bits of z from the very left
place are compulsory filled by 0 (logical
displacement), and elsewhere the very left
� bits of z are filled with the value from the
very left (sign) bit (arithmetic displacement), i.e.
if the number is negative, then the filling will
be with 1. Therefore, it is recommended to
use unsigned type of variables (if the opposite
is not necessary) while working with bitwise
operations. In the Java programming language,
this problem is solved by introducing the two
different operators: z=x>>k and z=x>>>k
[12,13].

Bitwise operations are left associative.

The priority of operations in descending order is
as follows: ~ (bitwise NOT); the arithmetic
operations * (multiplication), / (division), %
(remainder or modulus); the arithmetic
operations + (addition) - (subtraction); the bitwise
operations << and >>; the relational operations
<, >, <=, >=, ==, !=; the bitwise operations &,^
and |; the logical operations && and ||.

Below we show some elementary examples of
using the bitwise operations.

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

3

Table 1. Bitwise operations in programming languages C/C++ and JAVA

�-th bit of

x

�-th bit of

y

�-th bit of

z = x & y;

�-th bit of

z = x | y;

�-th bit of

z = x ^ y;

�-th bit of

z = ~x;

 0 0 0 0 0 1

 0 1 0 1 1 1

 1 0 0 1 1 0

 1 1 1 1 0 0

Example 1: To compute the value of the i-th bit
(0 or 1) of an integer variable x we can use the
function:

int BitValue(int x, unsigned int i) {
int b = ((x & 1<<i) == 0) ? 0 : 1;
return b;

}

Example 2: Directly from the definition of the
operation bitwise shift left (<<) follows the
efficiency of the following function computing 2�,
where � is a nonnegative integer:

unsigned int Power2(unsigned int n) {
return 1<<n;

}

Example 3: The integer function�(�) = � % 2�
implemented using operation bitwise shift right
(>>).

int Div2(int x, unsigned int n) {
int s = x<0 ? -1 : 1;

 /* s = the sign of x */
 x = x*s;

 /* We reset the sign bit of x */
 return (x>>n)*s;

}

When we work with negative numbers we
must consider that in the computer the
presentation of the negative numbers is through
the so called true complement code. The
following function gives us how to code the
integers in the memory of the computer we
work with. For simplicity, we are going to work
with type short, but it is not a problem for the
function to be overloaded for other integer types,
too.

Example 4: A function showing the presentation
of the numbers of type short in the memory of the
computer.

void BinRepl(short n) {
int b;
int d = sizeof(short)*8 - 1;
while (d>=0) {

b= 1<<d & n ? 1 : 0;
cout<<b;
d--;

}
}

In Table 2 we give some experiments with the
function BinRepl:

Table 2. Presentation of some numbers of type short in the memory of the computer

An integer of type short Presentation in memory
0 0000000000000000
1 0000000000000001
-1 1111111111111111
2 0000000000000010
-2 1111111111111110
16 = 24 0000000000010000
-16 = -2

4
 1111111111110000

26=2
4
+2

3
+2 0000000000011010

-26= -(24+23+2) 1111111111100110
41 = 2

5
+2

3
+1 0000000000101001

-41 = -(25+23+1) 1111111111010111
32767 = 2

15
 - 1 0111111111111111

-32767 = -(2
15

 – 1) 1000000000000001
32768 = 215 1000000000000000
-32768 = -2

15
 1000000000000000

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

4

Compare the function presented in Example 4 to
the next function presented in Example 5.

Example 5: A function that prints an integer in
binary notation.

void DecToBin(int n) {
if (n<0) cout<<'-';

/* Prints the sign - , if n<0: */
n = abs(n);
int b;
int d = sizeof(int)*8 - 1;
while (d>0 && (n & 1<<d) == 0) d--;

/* Skips the insignificant zeroes at the
beginning: */

while (d>=0) {
b= 1<<d & n ? 1 : 0;
cout<<b;
d--;

}
}

Example 6: The following function calculates the
number of 1 in an integer � written in a binary
notation. Here again we ignore the sign of the
number (if it is negative) and we work with its
absolute value.

int NumbOf_1(int n) {
n = abs(n);
int temp=0;
int d = sizeof(int)*8 - 1;

for (int i=0; i<d; i++)
if (n & 1<<i) temp++;

return temp;
}

3. A PRESENTATION OF THE SUBSETS
OF A SET

Let � = {��, ��, … , ����}, |�| = �, be a finite set.
Each subset of � could be denoted by means of
a Boolean vector �(�) = ⟨��, ��, … , ����⟩, where
�� = 1 ⇔ �� ∈ � and �� = 0 ⇔ �� ∉ � , � =
0,1,2, . . . , � − 1 . As we proved in [14], a great
memory economy could be achieved, if instead
of boolean vectors, we use the presentation of
the non-negative integers in a binary notation,
where the integer 0 corresponds to empty set,
while the integer 2� − 1 , which in a binary
notation is written by means of � identities,
corresponds to the basic set �. Thus, a natural
one to one correspondence between the integers
of the closed interval [0, 2� − 1] and the set of all
subsets of � is achieved. The integer � ∈
[0, 2� − 1] corresponds to the set � ⊆ � , if for
every � = 0,1,2, . . . , � − 1 the �-th bit of the binary

representation of � equals 1 if and only if �� ∈ �.
In this way, the need of the use of bitwise
operations naturally arises in cases involving the
computer realisation of various operations with
sets.

Such an approach is comfortable and
significantly effective when the basic set � is
with relatively small cardinal number � = |�|. A
significant importance has also the operating
system and programming environment that is
used. This is so, because to encode a set, which
is a subset of �, where |�| = �, with the above
mentioned method � bits are necessary. If � bits
are necessary for the integer type in the

programming environment, then �
�

�
� + 1

variables of that certain type will be necessary,
so as to put the above mentioned ideas into
practice, where ⌊�⌋ denotes the function ”the
whole part of �”. For example, when � ≤ 5, four
bytes (thirty-two bits) are necessary to write a
program that can solve a Sudoku puzzle in the
size of �� × �� if we use the set theory method
[15]. In this case, every set of the kind � =
{��, ��, . . . , ��} ⊆ {1,2, … , ��} and the empty set
could be simply encoded with an integer.

In particular, let � ⊆ {1,2, … , �} . We denote by
��(�), � = 1,2, … � the functions

 ��(�) = �
1 �� � ∈ �
0 �� � ∉ �

� (1)

Then we represent uniquely the set � by the
integer

�(�) = ∑ �
��� ��(�)2���, 0 ≤ �(�) ≤ 2� − 1,

 (2)

where ��(�), � = 1,2, … , � is given by formula (1).
In other words, each subset of the set {1,2, … , �},
we will represent uniquely with the help of an
integer from the interval [0, 2� − 1] (integer
representation of sets).

It is readily seen that

�({1,2, … , �}) = 2� − 1. (3)

Evidently if � = {�}, i.e.|�| = 1, then

�({�}) = 2���. (4)

The empty set ∅ is represented by

�(∅) = 0. (5)

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

5

4. A PROGRAM IMPLEMENTATION OF
SUBSETS OF THE SET {1, 2, ... , 32}
USING THE BITWISE OPERATIONS

We consider the set

� = {1,2, … ,32},

which we call basic.

Here we will describe a class whose objects can
be all subsets of �, including the empty set. The
class will contain a single field – an integer n of
type unsigned int, the binary record of which will
represent the considered set. Thus �-th bit of this
record is 1 if and only if the integer � + 1 belongs
to the set represented by n (Bit numbering starts
from zero). Methods of this class will be various
operations with sets.

The class Set_N, which we create, will have two
constructors. The first one has no parameters
and initialises the empty set. The second one
has one parameter – a nonnegative integer, the
binary record of which determines the set. Thus,
the empty set can be initialised in two ways –
with no parameter or with a parameter equal to 0.
In many programming environments, the basic
set � is initialised with the standard constant
Maxint, which in our case is equal to 2��− 1 .
Using the operation << (bitwise shift to the left),
this constant can be calculated as shown in the
following example:

Example 7:

Set_N A, B(0);
unsigned int mx = ((1<<31) - 1)*2 + 1;
Set_N U(mx);

In Example 7, the sets A and B are initialised as
empty sets in both different ways, and U is the
basic set, i.e. U is the set containing all integers
from 1 to 32.

Let the sets �, � ⊆ � = {1,2, … �}, which will be
the objects of the class we create and let the

integer � ∈ �. Consider the following operations
with sets that will realise as methods of the class
Set and which, by overloading some operators,
will have their own suitable notations:

 The intersection � ∩ � of two sets. This

operation we will denote with A*B.
 The union � ∪ � of two sets. This operation

we will denote with A+B.
 The union � ∪ {�} of the set � with the

one-element set {�}. This operation we will
denote with A+k.

 Adding the integer � ∈ � to the set �. This
operation we will denote with k+A.

Remark: Here we have to note that from the
algorithmic point of view A + k and k + A are
realised differently, taking into account the
standard of C++ programming language,
regardless of commutativity for the operation of
union of two sets.

 Removing the integer k from the set A. If
� ∉ � then A does not change. This
operation we will denote with A-k.

 Let �\� = {� | � ∈ � & � ∈ �} . This
operation we will denote with A-B.

 Checking whether� ⊇ � , that is, whether
the set � contains the proper subset � .
This operation we will denote with A>=B.
The result is true or false.

 Checking whether � ⊆ �, that is, whether
the set � is proper subset of the set �. This
operation we will denote with A<=B. The
result is true or false.

 Verifying that sets � and � are equal to
each other we will denote with A==B. The
result is true or false.

 Checking whether the sets � and � are
different will be denoted by A!=B. The
result is true or false.

 To verify that an integer � ∈ � belongs to
the set � ⊆ � , we will use the method
(function) A.in(k). The result is true or
false.

Below we offer a specification the class Set_N:

class Set_N
{
/*

The set is encoded by non-negative integer n in binary notation:
*/

unsigned int n;
public:

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

6

/*
Constructor without parameter – creates empty set:

*/
Set_N();

/*
Constructor with parameter – creates a set containing the integer i, if and only if the i-th bit of

the parameter k is 1:
*/

Set_N(unsigned int k);
/*

Returns the integer n that encodes the set:
*/

int get_n() const;
/*

Overloading of the operators *, +, -, >=, <=, == and !=
*/

Set_N operator * (Set_N const &);
Set_N operator + (Set_N const &);
Set_N operator + (unsigned int);
friend Set_N operator + (unsigned int, Set_N const &);
Set_N operator - (unsigned int);
Set_N operator - (Set_N const &);
bool operator >= (Set_N const &);
bool operator <= (Set_N const &);
bool operator == (Set_N const &);
bool operator != (Set_N const &);

/*
Checks whether the integer k belongs to the set:

*/
bool in(unsigned int k);

/*
Destructor

*/
~Set_N();

}
Below we describe a realisation of the methods of class Set_N, with substantial use of bitwise

operations:

Set_N::Set_N()
{

n = 0;
}
Set_N::Set_N(unsigned int k)
{

n = k;
}

int Set_N::get_n()
{

return n;
}

Set_N Set_N::operator * (Set_N const &s)
{

return (this->n) & s.get_n();
}

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

7

Set_N Set_N::operator + (Set_N const &s)
{

return (this->n) | s.get_n();
}

Set_N Set_N::operator + (unsigned int k)
{

return (this->n) | (1<<(k-1));
}

Set_N operator + (unsigned int k, Set_N const &s)
{

return (1<<(k-1)) | s.get_n();
}

Set_N Set_N::operator - (unsigned int k)
{

int temp = (this->n) ^ (1<<(k-1));
return (this->n) & temp;

}

Set_N Set_N::operator - (Set_N const &s)
{

int temp = this->n ^ s.get_n();
return (this->n) & temp;

}

bool Set_N::operator >= (Set_N const &s)
{

return (this->n | s.get_n()) == this->n;
}

bool Set_N::operator <= (Set_N const &s)
{

return (this->n | s.get_n()) == s.get_n();
}

bool Set_N::operator == (Set_N const &s)
{

return ((this->n ^ s.get_n()) == 0);
}

bool Set_N::operator != (Set_N const &s) {

return !((this->n ^ s.get_n()) == 0);
}

bool Set_N::in(int k)
{

return this->n & (1<<(k-1));
}

5. CONCLUSION

We hope that this material will be useful to
students in learning the topic of "bitwise
operations". We also hope that the article
will help teachers in their quest to choose

suitable examples demonstrate the course
material.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

Yordzhev; AJRCOS, 1(4): 1-8, 2018; Article no.AJRCOS.44314

8

REFERENCES

1. Yordzhev K. An example for the use of
bitwise operations in programming. Thirty
Eighth Spring Conference of the Union of
Bulgarian Mathematicians, Borovetz,
Bulgaria, April 1-5; 2009. Preprint
arXiv:1201.1468

2. Kostadinova H, Yordzhev K. An
entertaining example for the usage of
bitwise operations in programming. Fourth
International Scientific Conference -
FMNS2011, Blagoevgrad, Bulgaria, June
8-11; 2011. Preprint arXiv:1201.3802

3. Yordzhev K. The bitwise operations related
to a fast sorting algorithm. International
Journal of Advanced Computer Science
and Applications (IJACSA). 2013;4(9):103-
107.

4. Yordzhev K. Bitwise operations in relation
to obtaining Latin squares. British Journal
of Mathematics & Computer Science.
2016;17(5):1–7.
DOI: 10.9734/BJMCS/2016/26471

5. Todorova M. Data structures and
programming in C ++. Sofia: Ciela; 2011.
ISBN: 978-954-28-0990-6. Bulgarian

6. Collins W. Data structures and the
standard template library. New York:
McGraw-Hill; 2003. ISBN: 978-
0072369656.

7. Horton I. Beginning STL: Standard
template library. Apress; 2015. ISBN:
9781484200056.

8. Lischner R. STL pocket reference. O'Reilly
Media; 2009. ISBN: 978-0-596-55638-9.

9. Wilson MD. Extended STL: Collections
and iterators. Addison-Wesley; 2007.
ISBN: 9780321305503.

10. Kiat Shi Tan, Steeb WH, Hardy Y.
Symbolic C++: An introduction to
computer algebra using object-oriented
programming. London: Springer-Verlag,
2000; 2012. ISBN: 978-1-85233-260-0.

11. Todorova M, Armianov P, Georgiev K.
Workbook of exercises on programming in
C++. Part Two – Object-Oriented
Programming Sofia: TechnoLogica; 2008.
ISBN: 978-954-9334-09-8. Bulgarian

12. Evans BJ, Flanagan D. Java in a Nutshell
Sixth Edition, O'Reilly; 2015.

13. Schildt H. Java: A Beginner’s Guide,
Seventh Edition, McGraw-Hill; 2017. ISBN:
978-1259589317, ISBN: 978-1-449-37082-
4.

14. Kostadinova H, Yordzhev K. A
representation of binary matrices. In:
Mathematics and Education in
Mathematics. Sofia: Union of Bulgarian
Mathematicians. 2010;39:198–206.

15. Yordzhev K, Kostadinova H. On some
entertaining applications of the concept of
set in computer science course.
Informational Technologies in Education.
2011;10:24–29.

DOI: 10.14308/ite000261

© 2018 Yordzhev; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://prh.sdiarticle3.com/review-history/26448

